Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: In this project, system identification is done on the Modular Unmanned Aerial Vehicle
(UAV). This is necessary to perform fault detection and isolation, which is part
of the Fault Tolerant Control research project at Stellenbosch University.
The equations necessary to do system identification are developed. Various methods
for system identification is discussed and the regression methods are implemented.
It is shown how to accommodate a sudden change in aircraft parameters
due to a fault. Smoothed numerical differentiation is performed in order to acquire
data necessary to implement the regression methods.
Practical issues regarding system identification are discussed and methods for
addressing these issues are introduced. These issues include data collinearity and
identification in a closed loop.
The regression methods are implemented on a simple roll model of the Modular
UAV in order to highlight the various difficulties with system identification. Different
methods for accommodating a fault are illustrated.
System identification is also done on a full nonlinear model of the Modular UAV.
All the parameters converges quickly to accurate values, with the exception of Cl R
,
CnP and Cn A
. The reason for this is discussed. The importance of these parameters
in order to do Fault Tolerant Control is also discussed.
An S-function that implements the recursive least squares algorithm for parameter
estimation is developed. This block accommodates for the methods of applying the
forgetting factor and covariance resetting. This block can be used as a stepping stone
for future work in system identification and fault detection and isolation. / AFRIKAANSE OPSOMMING: In hierdie projek word stelsel identifikasie gedoen op die Modulêre Onbemande Vliegtuig.
Dit is nodig om foutopsporing en isolasie te doen wat ’n deel uitmaak van fout
verdraagsame beheer.
Die vergelykings wat nodig is om stelsel identifikasie te doen is ontwikkel. Verskeie
metodes om stelsel identifikasie te doen word bespreek en die regressie metodes is
uitgevoer. Daar word gewys hoe om voorsiening te maak vir ’n skielike verandering
in die vliegtuig parameters as gevolg van ’n fout. Reëlmatige numeriese differensiasie
is gedoen om data te verkry wat nodig is vir die uitvoering van die regressie metodes.
Praktiese kwessies aangaande stelsel identifikasie word bespreek en metodes om
hierdie kwessies aan te spreek word gegee. Hierdie kwessies sluit interafhanklikheid
van data en identifikasie in ’n geslote lus in.
Die regressie metodes word toegepas op ’n eenvoudige rol model van die Modulêre
Onbemande Vliegtuig om die verskeie kwessies aangaande stelsel identifikasie uit te
wys. Verskeie metodes vir die hantering vir ’n fout word ook illustreer.
Stelsel identifikasie word ook op die volle nie-lineêre model van die Modulêre
Onbemande Vliegtuig gedoen. Al die parameters konvergeer vinnig na akkurate
waardes, met die uitsondering van Cl R
, CnP and Cn A
. Die belangrikheid van
hierdie parameters vir fout verdraagsame beheer word ook bespreek.
’n S-funksie blok vir die rekursiewe kleinste-kwadraat algoritme is ontwikkel. Hierdie
blok voorsien vir die metodes om die vergeetfaktor en kovariansie herstelling
te implementeer. Hierdie blok kan gebruik word vir toekomstige werk in stelsel
identifikasie en foutopsporing en isolasie.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/4164 |
Date | 03 1900 |
Creators | Pietersen, Willem Hermanus |
Contributors | Peddle, I. K., University of Stellenbosch. Faculty of Engineering. Dept. of Electrical and Electronic Engineering. |
Publisher | Stellenbosch : University of Stellenbosch |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | Unknown |
Type | Thesis |
Format | 107 p. : ill. |
Rights | University of Stellenbosch |
Page generated in 0.002 seconds