Return to search

Fault simulation and test pattern generation for synchronous and asynchronous sequential circuits

In this dissertation, we propose two fault simulators, called HOPE and HOPE2, and an autolllatic test pattern generator (ATPG), called ATHENA, for synchronous and asynchronous sequential circuits.

HOPE is a parallel fault simulator for synchronous sequential circuits. In HOPE, a packet of 32 faults is simulated in parallel. Several new heuristics are employed in HOPE to accelerate the parallel fault simulation. The heuristics are 1) a reduction of faults to be simulated in parallel, 2) a new fault injection method called functional fault injection, and J) a combination of static and dynamic fault ordering methods. According to our experiments, HOPE is about 2.2 times, on the average, faster than a competing fault simulator, called PROOFS (1]--[2]. for 16 ISCAS89 benchmark circuits [3].

HOPE2 and ATHENA are a fault simulator and an A TPG for asynchronous sequential circuits, respectively. The key idea employed in HOPE2 and ATHENA is 10 transform an asynchronous sequential circuit into a synchronous sequential circuit through remodeling memory elements. We proposed various modeling techniques which transform any asynchronous sequential circuit into a synChronous sequential circuit. Once an asyncllfonous circuit is transformed into a synchronous circuit, various techniques developed for synchronous sequential circuits are employed in HOPE2 and ATHENA. HOPE2 employs the parallel simulation techniques of HOPE. ATHENA employs the back algorithm [4] for test generation, and the parallel fault simulation teChnique for fault simulation. HOPE2 and ATHENA can manage industrial circuits consisting of latches, flip-flops with set/reset, tristate gates, BUS elements, bi-directional I/O pins, mutiplexers, ROMs and RAMs. OUf experimental results on various industrial circuits show that HOPE2 is about two times faster than a commercial fault simulator, the Verifault fault simulator of Cadence, while requiring much smaller memory size. ATHENA also shows high performance for various industrial circuits. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/38494
Date06 June 2008
CreatorsLee, Hyung Ki
ContributorsElectrical Engineering, Ha, D.S., Armstrong, James R., Midkiff, Scott F., Shaffer, Clifford A., Tront, Joseph G.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatxii, 195 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 30805385, LD5655.V856_1993.L444.pdf

Page generated in 0.0019 seconds