Made available in DSpace on 2014-12-17T14:08:33Z (GMT). No. of bitstreams: 1
JulianaPM.pdf: 4255756 bytes, checksum: 0f65b2b3a4f0afafcf55cda7d138bb36 (MD5)
Previous issue date: 2009-06-29 / This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way
that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented / Esta disserta??o apresenta o estudo e implementa??o de algoritmos inteligentes para o monitoramento da medi??o de sensores envolvidos em processos de transfer?ncia de
cust?dia de g?s natural. Para a cria??o destes algoritmos s?o investigadas arquiteturas de Redes Neurais Artificiais devido a caracter?sticas particulares, tais como: aprendizado, adapta??o e predi??o. Um preditor ? implementado com a finalidade de reproduzir o comportamento din?mico da sa?da de um sensor de interesse, de tal forma que sua sa?da seja comparada ? sa?da real do sensor. Uma rede recorrente ? utilizada para este fim, em virtude de sua capacidade em lidar com informa??o din?mica.
A sa?da real do sensor e a sa?da estimada do preditor formam a base para a cria??o das estrat?gias de detec??o e identifica??o de poss?veis falhas. Duas arquiteturas de redes neurais competitivas s?o investigadas e suas potencialidades s?o utilizadas para classificar tipos diferentes de falhas. O algoritmo de predi??o e as estrat?gias de detec??o e classifica??o de falhas, bem como os resultados obtidos, ser?o apresentados
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/12895 |
Date | 29 June 2009 |
Creators | Medeiros, Juliana Pegado de |
Contributors | CPF:09463097449, http://lattes.cnpq.br/7325007451912598, D?ria Neto, Adri?o Duarte, CPF:10749896434, http://lattes.cnpq.br/1987295209521433, Martins, Allan de Medeiros, CPF:01979076448, http://lattes.cnpq.br/4402694969508077, Freire, Eduardo Oliveira, CPF:38684870506, http://lattes.cnpq.br/6140266116057805, Melo, Jorge Dantas de |
Publisher | Universidade Federal do Rio Grande do Norte, Programa de P?s-Gradua??o em Ci?ncia e Engenharia do Petr?leo, UFRN, BR, Pesquisa e Desenvolvimento em Ci?ncia e Engenharia de Petr?leo |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds