Return to search

Méthodes d'apprentissage automatique pour l'étude et la conservation de la faune sauvage

Les technologies pertinentes à l'étude et à la conservation de la faune sauvage ont connu des progrès fulgurants dans les dernières décennies. Les dispositifs tels que les systèmes de positionnement global, les satellites ou encore les pièges photographiques permettent d'étudier l'écologie animale à des échelles jusqu'alors inespérées, et facilitent la transformation des connaissances en des mesures concrètes de conservation. Les méthodes d'analyse et de modélisation utilisées dans ces contextes n'ont toutefois pas évolué au même rythme que les données ont pu gagner en complexité et en granularité. Ce mémoire s'intéresse à l'exploration du potentiel applicatif de l'apprentissage automatique pour répondre à cet enjeu, notamment dans les domaines de l'écologie des populations, de l'écologie du mouvement et de l'écologie du comportement. Dans un premier lieu, un pipeline à base d'apprentissage automatique combinant apprentissage profond, approximation de fonctions, algorithmes de regroupement et connaissances d'experts est proposé afin d'inférer, à partir d'une seule image satellite, la population d'oies des neiges, de harfangs des neiges et de lemmings de l'île Bylot (Nunavut). Par la suite, des protocoles novateurs permettant d'évaluer et de calibrer des modèles de mouvement animal, incluant ceux basés sur des algorithmes d'apprentissage automatique, sont introduits. Ces derniers reposent sur de nouvelles métriques basées sur la théorie du transport optimal, une branche des mathématiques appliquées. La pertinence des protocoles introduits est notamment révélée à travers une étude à large échelle comparant divers modèles de mouvement du renard arctique. Enfin, une méthodologie en mesure d'identifier automatiquement des comportements clés de l'éléphant d'Afrique est présentée. Cette méthodologie, combinant l'apprentissage automatique à la science des réseaux, tire profit des patrons géométriques associés aux comportements d'intérêt afin d'être en mesure d'apprendre à partir de peu de données, et de pouvoir être calibrée et déployée dans des environnements où les ressources matérielles sont très limitées. / Technologies relevant to wildlife study and conservation have made lightning fast progress in recent decades. Devices such as global positioning systems, satellites and camera traps are facilitating the study of animal ecology at previously unthinkable scales, and are helping to translate scientific knowledge into practical conservation actions. However, the analytical and modeling approaches used in these contexts have not kept pace with the increasing complexity and granularity of ecological data. This master thesis explores the potential of machine learning to address this challenge, notably in the fields of population ecology, movement ecology and behavioral ecology. A machine learning-based pipeline combining deep learning, function approximation, clustering algorithms and expert knowledge is first introduced to infer, from a single satellite image, the population of snow geese, snowy owls and lemmings on Bylot Island (Nunavut). Subsequently, innovative protocols for the evaluation and calibration of animal movement models, including those based on machine learning algorithms, are introduced. These protocols rely on optimal transport-based metrics, a field of applied mathematics. The relevance of the introduced protocols are demonstrated through a large-scale study comparing various Arctic fox movement models. Finally, a method that can automatically identify key African elephant behaviors is presented. By combining machine learning with network science, this method leverages the geometric patterns embedded in the behaviors of interest in order to learn from very little data, as well as to be able to be calibrated and deployed in environments where hardware resources are highly limited.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/142967
Date16 May 2024
CreatorsVilleneuve, Catherine
ContributorsDurand, Audrey, Legagneux, Pierre
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xvi, 180 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0024 seconds