Return to search

Using functional annotation to characterize genome-wide association results

Genome-wide association studies (GWAS) have successfully identified thousands of variants robustly associated with hundreds of complex traits, but the biological mechanisms driving these results remain elusive. Functional annotation, describing the roles of known genes and regulatory elements, provides additional information about associated variants. This dissertation explores the potential of these annotations to explain the biology behind observed GWAS results.
The first project develops a random-effects approach to genetic fine mapping of trait-associated loci. Functional annotation and estimates of the enrichment of genetic effects in each annotation category are integrated with linkage disequilibrium (LD) within each locus and GWAS summary statistics to prioritize variants with plausible functionality. Applications of this method to simulated and real data show good performance in a wider range of scenarios relative to previous approaches. The second project focuses on the estimation of enrichment by annotation categories. I derive the distribution of GWAS summary statistics as a function of annotations and LD structure and perform maximum likelihood estimation of enrichment coefficients in two simulated scenarios. The resulting estimates are less variable than previous methods, but the asymptotic theory of standard errors is often not applicable due to non-convexity of the likelihood function. In the third project, I investigate the problem of selecting an optimal set of tissue-specific annotations with greatest relevance to a trait of interest. I consider three selection criteria defined in terms of the mutual information between functional annotations and GWAS summary statistics. These algorithms correctly identify enriched categories in simulated data, but in the application to a GWAS of BMI the penalty for redundant features outweighs the modest relationships with the outcome yielding null selected feature sets, due to the weaker overall association and high similarity between tissue-specific regulatory features.
All three projects require little in the way of prior hypotheses regarding the mechanism of genetic effects. These data-driven approaches have the potential to illuminate unanticipated biological relationships, but are also limited by the high dimensionality of the data relative to the moderate strength of the signals under investigation. These approaches advance the set of tools available to researchers to draw biological insights from GWAS results.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/33248
Date11 December 2018
CreatorsFisher, Virginia Applegate
ContributorsLiu, Ching-Ti
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution-NonCommercial 4.0 International, http://creativecommons.org/licenses/by-nc/4.0/

Page generated in 0.0021 seconds