Les technologies dites « haut débit » permettent de mesurer de très grandes quantités de variables à l'échelle de chaque individu : séquence ADN, expressions des gènes, profil lipidique… L'extraction de connaissances à partir de ces données peut se faire par exemple par des méthodes de classification. Ces données contenant un très grand nombre de variables, mesurées sur quelques centaines de patients, la sélection de variables est une étape préalable indispensable pour réduire le risque de surapprentissage, diminuer les temps de calcul, et améliorer l'interprétabilité des modèles. Lorsque le nombre d’observations est faible, la sélection tend à être instable, et on observe souvent que sur deux jeux de données différents mais traitant d’un même problème, les variables sélectionnées ne se recoupent presque pas. Pourtant, obtenir une sélection stable semble crucial si l'on veut avoir confiance dans la pertinence effective des variables sélectionnées à des fins d'extraction de connaissances. Dans ce travail, nous avons d'abord cherché à déterminer quels sont les facteurs qui influencent le plus la stabilité de la sélection. Puis nous avons proposé une approche, spécifique aux données puces à ADN, faisant appel aux annotations fonctionnelles pour assister les méthodes de sélection habituelles, en enrichissant les données avec des connaissances a priori. Nous avons ensuite travaillé sur deux aspects des méthodes d'ensemble : le choix de la méthode d'agrégation et les ensembles hybrides. Dans un dernier chapitre, nous appliquons les méthodes étudiées à un problème de prédiction de la reprise de poids suite à un régime, à partir de données puces, chez des patients obèses. / High throughput technologies allow us to measure very high amounts of variables in patients: DNA sequence, gene expression, lipid profile… Knowledge discovery can be performed on such data using, for instance, classification methods. However, those data contain a very high number of variables, which are measured, in the best cases, on a few hundreds of patients. This makes feature selection a necessary first step so as to reduce the risk of overfitting, reduce computation time, and improve model interpretability. When the amount of observations is low, feature selection tends to be unstable. It is common to observe that two selections obtained from two different datasets dealing with the same problem barely overlap. Yet, it seems important to obtain a stable selection if we want to be confident that the selected variables are really relevant, in an objective of knowledge discovery. In this work, we first tried to determine which factors have the most influence on feature selection stability. We then proposed a feature selection method, specific to microarray data, using functional annotations from Gene Ontology in order to assist usual feature selection methods, with the addition of a priori knowledge to the data. We then worked on two aspects of ensemble methods: the choice of the aggregation method, and hybrid ensemble methods. In the final chapter, we applied the methods studied in the thesis to a dataset from our lab, dealing with the prediction of weight regain after a diet, from microarray data, in obese patients.
Identifer | oai:union.ndltd.org:theses.fr/2014PA066317 |
Date | 15 October 2014 |
Creators | Dernoncourt, David |
Contributors | Paris 6, Clément, Karine, Zucker, Jean-Daniel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds