Cette thèse se situe dans la cryptanalyse physique des algorithmes de chiffrement par blocs. Un algorithme cryptographique est conçu pour être mathématiquement robuste. Cependant, une fois implémenté dans un circuit, il est possible d'attaquer les failles de ce dernier. Par opposition à la cryptanalyse classique, on parle alors d'attaques physiques. Celles-ci ne permettent pas d'attaquer l'algorithme en soi, mais son implémentation matérielle. Il existe deux grandes familles d'attaques physiques différentes : les attaques par observation du circuit durant le chiffrement, et les attaques par injections de fautes, qui analysent l'effet d'une perturbation intentionnelle sur le fonctionnement du circuit. Les attaques physiques ont deux types d'objectifs : rechercher la clé ou faire de la rétro-conception (retrouver une partie d'un algorithme de chiffrement privé, ex : s-boxes modifiées). Bien que leurs principes semblent distincts, cette thèse présente un formalisme qui permet d'unifier toutes ces attaques. L'idée est de décrire les attaques physiques de façon similaire, afin de pouvoir les comparer. De plus, ce formalisme a permis de mettre en évidence de nouvelles attaques. Des travaux novateurs ayant pour objet de retrouver la clé de chiffrement d'un AES, uniquement avec la consommation de courant ont été menés. Une nouvelle attaque de type FIRE (Fault Injection for Reverse Engineering) pour retrouver les s-boxes d'un pseudo DES est également présentée dans la thèse. Ce travail a abouti sur une réflexion plus générale, sur les attaques par injections de fautes dans les schémas de Feistel classiques et généralisés. / The main subject of this work is the physical cryptanalysis of blocks ciphers. Even if cryptographic algorithms are properly designed mathematically, they may be vulnerable to physical attacks. Physical attacks are mainly divided in two families: the side channel attacks which are based on the observation of the circuit behaviour during the computation, and the fault injection attacks which consist in disturbing the computation in order to alter the correct progress of the algorithm. These attacks are used to target the cipher key or to reverse engineer the algorithm. A formalism is proposed in order to describe the two families in a unified way. Unifying the different attacks under a same formalism allows to deal with them with common mathematical tools. Additionally, it allows a comparison between different attacks. Using this framework, a generic method to assess the vulnerabilities of generalized Feistel networks to differential fault analysis is presented. This work is furthermore extended to improve a FIRE attack on DES-like cryptosystems with customized s-boxes.
Identifer | oai:union.ndltd.org:theses.fr/2014EMSE0759 |
Date | 24 October 2014 |
Creators | Le Bouder, Hélène |
Contributors | Saint-Etienne, EMSE, Tria, Assia |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds