Return to search

Tunelamento e transporte quântico em sistemas mesoscópicos : fundamentos e aplicações

Orientador: Guillermo Gerardo Cabrera Oyarzun / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-09-24T19:11:22Z (GMT). No. of bitstreams: 1
Dartora_CesarAugusto_D.pdf: 2101604 bytes, checksum: 3eb6940416ec56ede441909468db04be (MD5)
Previous issue date: 2005 / Resumo: O interesse atual e crescente nos sistemas mesoscópicos se deve à miniaturização cada vez maior dos dispositivos eletrônicos e à produção de materiais com possibilidade de armazenar informação em altas densidades (Gbits e Terabits/pol 2 ). A Física Mesoscópica descreve fenômenos que ocorrem em uma escala de tamanhos intermediária entre o macroscópico e o microscópico. Esta região cinzenta permite interpolar entre o regime atômico-molecular e o limite macroscópico, dominado este último pelas propriedades de volume (bulk ), que são objetos usuais de estudo em Física da Matéria Condensada. Na escala de nanometros e dezenas de nanometros, os elétrons podem propagar-se sem sofrer espalhamento inelástico (regime balístico) e a fase da função de onda pode manter sua coerência em escala da ordem do tamanho do sistema, dando lugar aos típicos fenômenos de interferência quântica. Neste trabalho fazemos um estudo detalhado das propriedades de transporte quântico em sistemas mesoscópicos, onde as barreiras de tunelamento fazem parte de diversos dispositivos eletrônicos. Estes sistemas incluem barreiras isolantes entre eletrodos metálicos, nanocontatos metálicos e junções tipo Josephson entre supercondutores. As principais estruturas aqui estudadas são as junções magnéticas de tunelamento e os nanofios e nanocontatos ferromagnéticos. Em ambos o fenômeno da magnetorresistência gigante (GMR) está presente, porém as origens do fenômeno são diferentes. Em junções de tunelamento a GMR tem origem na densidade de estados dos elétrons de condução nos eletrôdos ferromagnéticos, entre os quais uma barreira isolante é colocada, bem como no tunelamento inelástico assistido por mágnons que surgem nas interfaces entre eletrodos e região isolante. Em nanocontatos e nanofios o fenômeno deve-se principalmente ao forte espalhamento de elétrons com dependência de spin na presença de paredes de domínio magnéticas / Abstract: The interest in mesoscopic systems has grown significantly due to the increasing miniaturization of electronic devices and the production of materials which makes possible to store information in higher densities (Gbits and Terabits/in 2 ). The Mesoscopic Physics describes phenomena that happen in an intermediary scale of sizes between the macroscopic and the microscopic world. This gray region allows to interpolate between the atomic-molecular regime and the macroscopic limit, the last one dominated by bulk properties which are the usual subject of Condensed Matter Physics. In the nanometer and tens of nanometers scale electrons can pro-pagate without suffering inelastic scattering (ballistic regime) and the phase of the wavefunction maintain its coherence in the scale of system¿s size, giving place to the typical phenomena of quantum interference. In this work a detailed study of quantum transport properties in mesoscopic systems, where the tunnelling barriers make part of many electronic devices, is done. These systems include insulating barriers between metallic electrodes, metallic nanocontacts and nanowires, and Josephson junctions between superconductors. The main structures here studied are magnetic tunnelling junctions and ferromag-netic nanowires and nanocontacts. In both cases the giant magnetoresistance phe-nomenon (GMR) is present, however the origins of it are quite different. In tun-neling junctions, where an insulating barrier is placed between two ferromagnetic electrodes, the GMR is due to both, density of states effects at the ferromagnetic elec-trodes, and inelastic tunneling from magnons at the interface regions. In nanowires and nanocontacts the transport is strongly in uenced by spin-dependent scattering in the presence of magnetic domain walls / Doutorado / Física da Matéria Condensada / Doutor em Ciências

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/277878
Date30 March 2005
CreatorsDartora, Cesar Augusto
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Cabrera Oyarzún, Guillermo Gerardo, 1948-, Laks, Bernardo, Ugarte, Daniel Mário, Silva, Antonio Jose Roque da, Jardim, Renato de Figueiredo
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Física Gleb Wataghin, Programa de Pós-Graduação em Física
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format130 p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds