Return to search

Throughput-oriented analytical models for performance estimation on programmable hardware accelerators / Analyse de performance potentielle d'une simulation de QCD sur réseau sur processeur Cell et GPU

Durant cette thèse, nous avons principalement travaillé sur deux sujets liés à l'analyse de la performance GPU (Graphics Processing Unit - Processeur graphique). Dans un premier temps, nous avons développé une méthode analytique et un outil d'estimation temporel (TEG) pour prédire les performances d'applications CUDA s’exécutant sur des GPUs de la famille GT200. Cet outil peut prédire les performances avec une précision approchant celle des outils précis au cycle près. Dans un second temps, nous avons développé une approche pour estimer la borne supérieure des performances d'une application GPU, en se basant sur l'analyse de l'application et de son code assembleur. Avec cette borne, nous connaissons la marge d'optimisation restante, et nous pouvons décider des efforts d'optimisation à fournir. Grâce à cette analyse, nous pouvons aussi comprendre quels paramètres sont critiques à la performance. / In this thesis work, we have mainly worked on two topics of GPU performance analysis. First, we have developed an analytical method and a timing estimation tool (TEG) to predict CUDA application's performance for GT200 generation GPUs. TEG can predict GPU applications' performance in cycle-approximate level. Second, we have developed an approach to estimate GPU applications' performance upper bound based on application analysis and assembly code level benchmarking. With the performance upper bound of an application, we know how much optimization space is left and can decide the optimization effort. Also with the analysis we can understand which parameters are critical to the performance.

Identiferoai:union.ndltd.org:theses.fr/2013REN1S014
Date15 February 2013
CreatorsLai, Junjie
ContributorsRennes 1, Université européenne de Bretagne, Seznec, André
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds