Ce mémoire de thèse présente les résultats d'expériences menées sur des gaz atomiques dégénérés de lithium bosonique 7Li et fermionique 6Li. L'état fondamental à N corps de ces gaz dépend de manière cruciale de l'interaction atomique dont on peut ajuster l'intensité et changer la nature, attractive ou répulsive en variant un champ magnétique autour d'une résonance de Feshbach. L'utilisation d'une telle résonance dans 7Li nous permet de produire le premier soliton d'ondes de matière. Il s'agit d'une fonction d'onde atomique unidimensionelle dans laquelle l'interaction attractive compense la dispersion naturelle : elle se propage donc sans déformation. Nous produisons un soliton à partir d'un condensat de Bose-Einstein de 7Li transféré dans un guide d'ondes optique unidimensionnel. Sa propagation caractéristique est observée sur une distance de plus d'un millimètre. Dans un gaz de fermions 6Li en interaction, une autre résonance de Feshbach est utilisée pour former très efficacement des molécules de 6Li2 ultra-froides piégées. De façon surprenante, ces dimères de fermions présentent une durée de vie considérablement plus longue que les dimères de bosons formés de manière similaire. C'est une conséquence du principe de Pauli. Cette grande stabilité nous permet de produire un condensat de Bose-Einstein pur de ces molécules bosoniques, qui réalise une des limites du superfluide fermionique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00006435 |
Date | 22 June 2004 |
Creators | Cubizolles, Julien |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds