The production of ferrochrome (FeCr) from chromite ore is a reducing process, whereby the Cr(III) and Fe(II) in the ore are reduced to metallic chromium (Cr) and iron (Fe) in the final product. FeCr is mostly used for the production of stainless steel, which is a vital alloy in modern society. It is, however, impossible to exclude oxygen completely from all the high temperature steps during the production process and very small amounts of Cr(VI) are therefore formed, although not intended. The formed Cr(VI) is mostly associated with the off-gas of the high temperature processes, which are cleaned before it is released into the atmosphere by means of venturi scrubbers or bag filter systems. Certain Cr(VI) species are regarded as carcinogenic, with specifically airborne exposure to these Cr(VI) species being associated with cancer of the respiratory system.
FeCr smelter facilities generate three main types of waste materials, i.e. slag, venturi sludge and bag filter dust (BFD). Most of the Cr in the waste materials consists mostly of Cr(III). However, BFD generated during the cleaning of the off-gas of open/semi-closed furnaces, could contain more significant levels of Cr(VI) than the slag and sludge.
The aim of this study was to determine the solubility of different Cr(VI) species present in BFDs. This would allow that the Cr(VI) in BFD is categorised as water soluble Cr(VI), sparingly soluble and insoluble Cr(VI). These solubility categories can then be related to groups of Cr(VI) compounds, therefore taking the first step in better characterisation of Cr(VI) present in BFD.
Four different BFD samples from FeCr producers in South Africa were characterised in detail. Analytical methods such as scanning electron microscope (SEM), SEM with energy-dispersive X-ray spectroscopy (SEM-EDS), particle size analysis, trace metal analysis with inductively coupled plasma with a mass spectrometer detector (ICP-MS) and Cr(VI) analysis with ion chromatography (IC) were utilised in order to characterise and categorise the samples.
The results indicated that more Cr(VI) leached with an increase in pH. This was in contrast with the trend for most heavy metals. This was also an indication that not only soluble, but also sparingly- and insoluble Cr(VI) compounds occur in the BFD samples evaluated. Further analysis showed that approximately one third of the Cr(VI) species was insoluble and the remainder consisted of sparingly insoluble and soluble Cr(VI) compounds. The most significant finding was that the current leaching procedures applied by FeCr producers, prior to the chemical reduction of Cr(VI), do not effectively extract the sparingly water insoluble compounds. This results in Cr(VI) leaching from waste facilities at later stages, even if seemingly effective Cr(VI) treatment was applied. Therefore, it should be considered as an extremely important future perspective to develop economically feasible Cr(VI) extraction procedures that will ensure complete extraction of
sparing water soluble Cr(VI) compounds together with the water soluble fraction, prior to chemical reduction of Cr(VI) and subsequent storage of the residue on a waste facility. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015
Identifer | oai:union.ndltd.org:NWUBOLOKA1/oai:dspace.nwu.ac.za:10394/15619 |
Date | January 2015 |
Creators | Van Dalen, Willem Petrus Johannes |
Source Sets | North-West University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds