Return to search

Damping Behavior in Ferroelectric Reinforced Metal Matrix Composites

Ferroelectric-reinforced metal matrix composites (FR-MMCs) show promise as high damping materials for structural applications. Most structural materials are valued based on their stiffness and strength; however, stiff materials typically have limited inherent ability to dampen mechanical or acoustic vibrations. The addition of ferroelectric ceramic particles may also augment the strength of the matrix, creating a multifunctional composite. In this work, the damping behavior of FR-MMCs created by the addition of barium titanate (BaTiO3) discontinuous reinforcement in a bearing bronze (Cu-10w%Sn) matrix has been studied. It has been shown that even when combined with other traditional composite mechanisms, added damping ability has been achieved due to the ferroelectric nature of the reinforcement. FR-MMCs currently represent a material system capable of exhibiting increased damping ability, as compared to the structural metal matrix alone. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/32570
Date18 May 2005
CreatorsPoquette, Ben David
ContributorsMaterials Science and Engineering, Kampe, Stephen L., Aning, Alexander O., Pickrell, Gary R., Reynolds, William T. Jr.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationBenPoquetteMSThesis.pdf

Page generated in 0.0019 seconds