The concept of Berry phase, since its proposition in 1984, has found numerous applications and appears in almost every branch of physics today. In this work, we study several physical effects in ferromagnetic metal materials
which are manifestations of the Berry phase. We first show that when a domain wall in a ferromagnetic nanowire is undergoing precessional motion, it pumps an electromotive force which follows a universal Josephson-type relation. We discover that the integral of the electromotive
force over one pumping cycle is a quantized topological invariant equal to integer multiples of h/e, which does not depend on the domain wall geometry nor its detailed dynamic evolution.
In particular, when a domain wall in a nanowire is driven by a constant magnetic field, we predict that the generated electromotive force is proportional to the applied field with a simple coefficient consisting of only fundamental constants. Our theoretical prediction has been successfully confirmed by experiments. Similar effect known as spin pumping occurs in magnetic multilayer heterostructures,
where a precessing free magnetic layer pumps a spin current into its adjacent normal metal layers. Based on this effect, we propose two magnetic nanodevices that can be useful in future spintronics applications: the magnetic
Josephson junction and the magneto-dynamic battery. The magnetic
Josephson junction has a drastic increase in resistance when the applied current exceeds a critical value determined by the magnetic anisotropy. The magneto-dynamic battery acts as a conventional charge battery in a circuit with well-defined electromotive force and internal resistance. We investigate the condition under which the power output and efficiency of the battery can be optimized. Finally we study the side jump contribution in the
anomalous Hall effect of a uniformly magnetized ferromagnetic metal. The side jump contribution, although arises from disorder scattering, was believed to be independent of both the scattering strength and the disorder density.
Nevertheless, we find that it has a sensitive dependence on the spin structure of the disorder potential. We therefore propose a classification scheme of disorder scattering according to their spin structures. When two or more classes of disorders are present, the value of side jump is no longer fixed but depends on the relative disorder strength between classes. Due to this competition, the side jump contribution could flow from one class dominated limit to another class dominated limit
when certain system control parameter changes. Our result indicates that the magnon scattering plays a role distinct from the normal impurity
scattering and the phonon scattering in the anomalous Hall effect, because they belong to different scattering classes. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-05-3213 |
Date | 08 June 2011 |
Creators | Yang, Shengyuan |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0019 seconds