Return to search

Propagation acoustique en milieu extérieur complexe: problèmes spécifiques au ferroviaire dans le contexte des trains à grande vitesse

La propagation acoustique en milieu extérieur fait intervenir des phénomènes physiques complexes, liés essentiellement aux variations de température et de vent dans la couche limite atmosphérique et aux frontières du domaine (effet de l'impédance du sol, de la topographie, ...). De plus, dans le contexte des trains à grande vitesse (TGV), les sources de bruit sont étendues, en mouvement 'a une vitesse relativement élevée, et de nature diverse (bruit de roulement, bruit d'origine aérodynamique, ...). Ce travail de thèse a pour but de modéliser la propagation du bruit des TGV en milieu atmosphérique, et de comprendre les phénomènes physiques associés à ce type de propagation. La première partie de ce travail s'intéresse à l'effet de diffusion des fluctuations turbulentes de température et de vent sur les ondes acoustiques en présence d'une zone d'ombre acoustique. L'effet de diffusion d'une taille de structure turbulente donnée dépend de la fréquence acoustique et de la géométrie de propagation. Ce couplage entre échelles de turbulence, fréquence acoustique et géométrie est étudié à l'aide d'outils de la théorie de la propagation des ondes en milieu aléatoire et de simulations d'équation parabolique, afin d'estimer les plus petites et les plus grandes tailles de structure turbulente à prendre en compte dans une configuration donnée. Dans une deuxième partie, une méthode de résolution des équations d'Euler linéarisées par différences finies dans le domaine temporel est décrite. L'utilisation de schémas numériques optimisés permet d'appliquer ce modèle de propagation à des configurations de propagation acoustique longue distance. Une des principales difficultés rencontrées avec les modèles temporels de propagation est la prise en compte de la réflexion des acoustiques sur un sol d'impédance finie. Des conditions limites d'impédance performantes d'un point de vue numérique sont proposées pour des modèles d'impédance couramment employés dans les études de propagation en milieu extérieur. Ces conditions limites sont obtenues en approchant l'impédance par des fonctions-type particulières, ce qui permet d'utiliser la méthode de convolution récursive. Elles sont validées dans des configurations de propagation bi- et tridimensionnelle, en considérant une atmosphère homogène puis une atmosphère stratifiée. Enfin, les applications spécifiques au bruit des TGV sont présentées dans une troisième partie. Dans un premier temps, un modèle de propagation du bruit des TGV basé sur une décomposition du train en un ensemble de sources ponctuelles équivalentes est décrit. Les résultats de ce modèle sont comparés à des mesures réalisées à différentes distances de la voie de circulation en supposant les conditions de propagation homogènes. Le modèle de sources équivalentes est également couplé à un code d'équation parabolique afin de prendre en compte l'effet d'un profil vertical de température ou de vent. Dans un deuxième temps, les phases d'approche et d''éloignement de passages de TGV sont analysées afin de caractériser un phénomène de "grondement". Dans certaines circonstances, il est en effet possible d'entendre un bruit similaire à un passage d'avion une dizaine de secondes avant ou après un passage de TGV, bruit qualifié de "grondement". L'analyse s'appuie principalement sur des résultats expérimentaux, qui permettent de déterminer les caractéristiques du "grondement" et les circonstances dans lesquelles il se produit. Cette étude est complétée par des simulations d'équation parabolique qui montrent l'importance du vent dans l'apparition de ce phénomène.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00660494
Date22 October 2008
CreatorsCotte, Benjamin
PublisherEcole Centrale de Lyon
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0027 seconds