Return to search

The role of lipid transfer proteins (LTPs) during the fertilization process in Arabidopsis thaliana / Untersuchungen zur Rolle von Lipidtransferproteinen (LTPs) während des Befruchtungsprozesses in Arabidopsis thaliana

Double fertilization is a defining characteristic of flowering plants (angiosperms). As the sperm cells of higher plants are non-motile, they need to be transported to the female gametophyte via the growing pollen tube. The pollen-tube journey through the female tissues represents a highly complex process. To provide for successful reproduction it demands intricate communication between the cells of the two haploid gametophytes - the polar growing pollen tube (carrying the two non-motile sperm cells) and the ovule (hosting the egg cell/synergid cells). The polar growth of the pollen tube towards the female gamete is guided by different signaling molecules, including sugars, amino acids and peptides. Some of these belong to the family of lipid transfer proteins (LTPs), which are secreted cysteine-rich peptides. Depending on the plant species several lines of evidence have also suggested potential roles for LTPs during pollen germination or pollen-tube guidance. Although Arabidopsis thaliana has 49 annotated genes for LTPs, several of which are involved in plant immunity and cell-to-cell communication, the role of most members of this family during fertilization is unknown.
The aim of this project was therefore to systematically identify LTPs which play a role in the fertilization process in A. thaliana, particularly during pollen tube guidance. To identify candidate proteins, the expression profile of LTPs in reproductive tissue was investigated. This was accomplished by in-silico bioinformatic analysis using different expression databases. Following confirmion of these results by qRT-PCR analysis, seven Type-I nsLTPs (LTP1, LTP2, LTP3, LTP4, LTP5, LTP6 and LTP12) were found to be exclusively expressed in pistils. Except for LTP12, all other pistil expressed LTPs were transcriptionally induced upon pollination. Using reporter-based transcriptional and translational fusions the temporal and spatial expression patterns together with protein localizations for LTP2, 3, 4, 5, 6, and 12 were determined in planta. Stable transgenic plants carrying PromLTP::GUS constructs of the six different LTP candidates showed that most of LTPs were expressed in the stigma/stylar region and were induced upon pollination. With respect to protein localization on the cellular level, they split into two categories: LTP2, LTP5 and LTP6 were localized in the cell wall, while LTP3, LTP4 and LTP12 were specifically targeted to the plasma membrane.
For the functional characterization of the candidate LTPs, several T-DNA insertion mutant plant lines were investigated for phenotypes affecting the fertilization process. Pollen development and quality as well as their in-vitro germination rate did not differ between the different single ltp mutant lines and wildtype plants. Moreover, in-vivo cross pollination experiments revealed that tube growth and fertilization rate of the mutant plants were similar to wildtype plants. Altogether, no discernible phenotype was evident in other floral and vegetative parts between different single ltp mutant lines and wildtype plants. As there was no distinguishable phenotype observed for single ltp-ko plants, double knock out plants of the two highly homologous genes LTP2 (expressed in the female stigma, style and transmitting tract) and LTP5 (expressed in the stigma, style, pollen pollen-tube and transmitting tract) were generated using the EPCCRISPR-Cas9 genome editing technique. Two ltp2ltp5 mutant transgenic-lines (#P31-P2 and #P31-P3) with frameshift mutations in both the genes could be established. Further experiments showed, that the CRISPR/Cas9-mediated knock-out of LTP2/LTP5 resulted in significantly reduced fertilization success. Cell biological analyses revealed that the ltp2ltp5 double mutant was impaired in pollen tube guidance towards the ovules and that this phenotype correlated with aberrant callose depositions in the micropylar region during ovule development. Detailed analysis of in-vivo pollen-tube growth and reciprocal cross pollination assay suggested that, the severely compromised fertility was not caused by any defect in development of the pollen grains, but was due to the abnormal callose deposition in the embryo sac primarily concentrated at the synergid cell near the micropylar end. Aberrant callose deposition in ltp2ltp5 ovules pose a complete blockage for the growing pollen tube to change its polarity to enter the funiculus indicating funicular and micropylar defects in pollen tube guidance causing fertilization failure.
Our finding suggests that female gametophyte expressed LTP2 and LTP5 play a crucial role in mediating pollen tube guidance process and ultimately having an effect on the fertilization success. In line with the existence of a N-terminal signal peptide, secreted LTPs might represent a well-suited mobile signal carrier in the plant’s extracellular matrix. Previous reports suggested that, LTPs could act as chemoattractant peptide, imparting competence to the growing pollen tube, but the molecular mechanism is still obscure. The results obtained in this thesis further provide strong evidence, that LTP2/5 together regulate callose homeostasis and testable models are discussed. Future work is now required to elucidate the detailed molecular link between these LTPs and their potential interacting partners or receptors expressed in pollen and synergid cells, which should provide deeper insight into their functional role as regulatory molecules in the pollen tube guidance mechanism. / Die ‚doppelte Befruchtung‘ ist ein charakteristisches Merkmal von Blütenpflanzen (Angiospermen). Da im Gegensatz zu vielen anderen Organismen die Spermien höherer Pflanzen nicht beweglich sind, müssen sie über den wachsenden Pollenschlauch zum weiblichen Gametophyten transportiert werden. Die je nach Pflanze durchaus lange Reise des Pollenschlauchs durch das weibliche Gewebe ist ein sehr komplexer Vorgang. Um eine erfolgreiche Reproduktion zu gewährleisten, ist eine fein abgestimmte Kommunikation zwischen den Zellen der beiden haploiden Gametophyten erforderlich - dem polar wachsenden Pollenschlauch (welcher die beiden nicht beweglichen Spermien trägt) und der Samenanlage (in der sich die Eizellen und Synergiden befinden). Das polare Wachstum des Pollenschlauchs in Richtung des weiblichen Gameten wird von verschiedenen Signalmolekülen gesteuert, darunter Zucker, Aminosäuren und Cystein-reiche Peptide (CRPs). Einige dieser Signalmoleküle gehören zur Familie der Lipidtransferproteine (LTPs), welche ebenfalls zur Klasse der CRPs gehören. Abhängig von der Pflanzenart deuten mehrere Hinweise auf eine mögliche Rolle von LTPs während der Pollenkeimung oder der Pollenschlauch-Navigation hin. Obwohl das Genom von Arabidopsis thaliana für mehr als 49 annotierte LTP-Gene kodiert, von denen einige an der ‚angeborenen Immunitätsreaktion‘ von Pflanzen sowie der Kommunikation von Zelle zu Zelle beteiligt sind, ist die physiologische Rolle der meisten Mitglieder dieser Familie während des Befruchtungsvorgangs bisher unbekannt.
Ziel dieses Projekts war es daher, systematisch solche LTPs zu identifizieren, die eine Rolle bei der Befruchtung von A. thaliana spielen, insbesondere bei der Navigation des Pollenschlauchs zur Eizelle. Um diese LTP Proteine zu identifizieren, wurde zunächst das Expressionsprofil von LTPs in reproduktiven Gewebe untersucht. Dies wurde durch bioinformatische ‚in-silico‘ Analyse unter Verwendung verschiedener Expressionsdatenbanken erreicht. Nach Bestätigung dieser Ergebnisse durch qRT-PCR- Analyse wurde festgestellt, dass sieben Typ-I-LTPs (LTP1, LTP2, LTP3, LTP4, LTP5, LTP6 und LTP12) präferentiell im Stempel exprimiert werden. Mit Ausnahme von LTP12 wurden darüber hinaus alle anderen Stempel-exprimierten LTPs nach Bestäubung auf transkriptioneller Ebene induziert. Unter Verwendung von Reporter-basierten Transkriptions- und Translationsfusionen wurden die zeitlichen und räumlichen Expressionsmuster zusammen mit Proteinlokalisationen für LTP2, 3, 4, 5, 6 und 12 ‚in planta‘ bestimmt. Stabile transgene Pflanzen, die PromLTP::GUS-Konstrukte der sechs verschiedenen LTP- Kandidaten exprimierten, zeigten, dass die meisten LTPs in der Stigma/Stylar-Region abundant waren und tatsächlich bei der Bestäubung induziert wurden. Die anschließende Proteinlokalisierung auf zellulärer Ebene klassifizierte diese LTPs in zwei Kategorien: LTP2,
LTP5 und LTP6 wurden in der Zellwand lokalisiert, während LTP3, LTP4 und LTP12 spezifisch an der Plasmamembran lokalisierten.
Zur funktionellen Charakterisierung der Kandidaten-LTPs wurden mehrere T-DNA- Insertionsmutanten auf Phänotypen hinsichtlich des Befruchtungsprozesses untersucht. Die Pollenentwicklung sowie die ‚in-vitro‘ Keimrate des Pollens unterschieden sich dabei nicht zwischen den verschiedenen LTP-Mutantenlinien und Wildtyp-Pflanzen. Darüber hinaus ergaben ‚in-vivo‘ Kreuzbestäubungsexperimente, dass das Pollenschlauchwachstum und die Befruchtungsrate der mutierten Pflanzen im Vergleich zu Wildtyp-Pflanzen ähnlich waren. Insgesamt war kein erkennbarer Phänotyp in der Blütenentwickung oder der vegetativen Entwicklung zwischen verschiedenen LTP-Einzel-Mutanten und Wildtyp-Pflanzen erkennbar. Aufgrund möglicher funktioneller Redundanz, und der Tatsache, dass für einzelne LTP ‚knock- out‘ Pflanzen kein unterscheidbarer Phänotyp beobachtet wurde, wurden Verlustmutanten der beiden hoch homologen und ko-exprimierten Gene LTP2 und LTP5 unter Verwendung der EPC-CRISPR-Cas9-Genomeditiertechnik erzeugt. Zwei ltp2ltp5-mutierte transgene Linien (# P31-P2 und # P31-P3) mit In-Frame-Mutationen in beiden Genen konnten dabei etabliert werden. Weitere Experimente zeigten, dass das CRISPR/Cas9-vermittelte Ausschalten von LTP2 und LTP5 zu einem signifikant verringerten Befruchtungserfolg in diesen Linien führte. Zellbiologische Analysen ergaben, dass die ltp2ltp5 Doppelmutante in der Pollenschlauch- Navigation zu den Ovulen hin beeinträchtigt war und dass dieser Phänotyp mit Kalloseablagerungen in der Region der Mikropyle während der Ovulen-Entwicklung in diesen Linien korrelierte. Eine detaillierte Analyse des ‚in-vivo‘ Wachstums der Pollenschläuche sowie eines wechselseitigen Bestäubungstests ergab, dass die stark beeinträchtigte Befruchtung nicht durch einen Entwicklungsdefekt im männlichen Gametophyten, dem Pollen, verursacht wurde. Stattdessen konnte die beeinträchtigte Befruchtung auf die abnormale Kalloseabscheidung im weiblichen Gametophyten, dem Embryosack, zurückgeführt werden. Interessanterweise, konzentrierte sich die Kalloseabscheidung in der ltp2ltp5 Doppelmutante hauptsächlich im Bereich der Synergiden, am mikropylaren Ende des Embryosacks. Für den wachsenden Pollenschlauch stellen diese im Vergleich zum Wildtyp untypischen Kalloseablagerungen in ltp2ltp5-Mutanten in der Nähe der Eizellen möglicherweise eine Blockade für die Perzeption von Ovulen-Signalen dar. Dies behindert die erforderliche Richtungsänderung des polar gerichteten Wachstums und somit die Fähigkeit des Pollenschlauchs, entlang des Funikulus zu wachsen und in die Mikropyle eindringen zu können. Diese Beobachtung zeigt, dass funikuläre und mikropylare Defekte in der Pollenschlauch-Navigation den Befruchtungserfolg vermindern.
Die Ergebnisse dieser Dissertation legen nahe, dass der weibliche Gametophyt, in welchem LTP2 und LTP5 exprimiert werden, eine entscheidende Rolle bei der Regulation der
Pollenschlauch-Navigation spielt und letztendlich auch einen messbaren Einfluss auf den Befruchtungserfolg hat. Aufgrund der Existenz eines N-terminalen Signalpeptids und der damit verbundenen Sekretion in den Apoplasten könnten LTPs als Signalmoleküle in der extrazellulären Matrix der Pflanze fungieren. Frühere Arbeiten deuteten bereits an, dass LTPs als chemoattraktive Peptide wirken könnten und dem wachsenden Pollenschlauch die Kompetenz verleihen könnten, die Signale der Eizellen wahrzunehmen. Der zugrundeliegende molekulare Mechanismus ist jedoch noch immer unbekannt. Die in dieser Dissertation erzielten Ergebnisse liefern jedoch starke Hinweise darauf, dass LTP2/5 zusammen die Homöostase der Kallosebildung regulieren. Mögliche Modelle zur Aktivität von LTPs im Kontext der Regulation der Kallose-Homöostase werden vorgestellt und diskutiert. Zukünftige Arbeiten sind nun erforderlich, um die detaillierte molekulare Verbindung zwischen diesen LTPs und ihren potenziellen Interaktionspartnern oder Rezeptoren, die in Pollen- und Synergidzellen exprimiert werden, aufzuklären. Diese sollten einen tieferen Einblick in die funktionelle Rolle von LTP2 und LTP5 als regulatorische Moleküle für die Pollenschlauch- Navigation geben.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:19961
Date January 2021
CreatorsKumari, Khushbu
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0047 seconds