Return to search

Non-invasive procedure for fetal electrocardiography

Antenatal fetal surveillance is a field of increasing importance in modern obstetrics. Measurements extracted (such as fetal heart rate) from antenatal fetal monitoring techniques have the potential to reduce the social, personal and financial burdens of fetal death on families, health care systems and the community. Techniques to monitor the fetus through pregnancy have been developed with the aim of providing information to enable the clinician to diagnose fetal wellbeing, characterise development and detect abnormality. An early diagnosis before delivery may increase the effectiveness of the appropriate treatment. Over the years, various research efforts have been carried out in the field of fetal electrocardiography by attaching surface electrodes to the maternal body. Unfortunately the desired fetal heartbeat signals at the electrode output are buried in an additive mixture of undesired interference disturbances. In this thesis, a non-invasive fetal electrocardiogram machine has been designed, constructed and implemented. This machine is composed of three modified electrocardiogram circuits and an external soundcard. Data was acquired from four surface electrodes placed on the maternal body. Eleven pregnant subjects, with a gestation age between the 30th and 40th weeks of pregnancy, were used to investigate the validity of this machine. Fetal R-waves were detected in 72.7 percent of subjects. The development of a non-invasive machine, capable of detecting and recording valuable anatomic and electrophysiological information of a fetus, represents an important tool in clinical and investigative obstetrics.

Identiferoai:union.ndltd.org:ADTP/258431
Date January 2007
CreatorsFox, Alice J Sophia, Women's & Children's Health, Faculty of Medicine, UNSW
PublisherAwarded by:University of New South Wales. Women's & Children's Health
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Fox Alice J Sophia., http://unsworks.unsw.edu.au/copyright

Page generated in 0.0017 seconds