L'intelligence artificielle est un domaine en pleine évolution. Au premier plan des percées récentes se retrouve des approches connues sous le nom d'apprentissage automatique. Cependant, bien que l'apprentissage automatique ait montré des performances remarquables dans des tâches telles que la reconnaissance et la génération d'images, la génération et la traduction de textes et le traitement de la parole, il est connu pour échouer silencieusement dans des conditions courantes. Cela est dû au fait que les algorithmes modernes héritent des biais des données utilisées pour les créer, ce qui conduit à des prédictions incorrectes lorsqu'ils rencontrent de nouvelles données différentes des données d'entraînement. Ce problème est connu sous le nom de défaillance hors-distribution. Cela rend l'intelligence artificielle moderne peu fiable et constitue un obstacle important à son déploiement sécuritaire et généralisé.
Ignorer l'échec de généralisation hors-distribution de l'apprentissage automatique pourrait entraîner des situations mettant des vies en danger. Cette thèse vise à aborder cette question et propose des solutions pour assurer le déploiement sûr et fiable de modèles d'intelligence artificielle modernes.
Nous présentons trois articles qui couvrent différentes directions pour résoudre l'échec de généralisation hors-distribution de l'apprentissage automatique. Le premier article propose une approche directe qui démontre une performance améliorée par rapport à l'état de l'art. Le deuxième article établie les bases de recherches futures en généralisation hors distribution dans les séries temporelles, tandis que le troisième article fournit une solution simple pour corriger les échecs de généralisation des grands modèles pré-entraînés lorsqu'entraîné sur tes tâches en aval. Ces articles apportent des contributions précieuses au domaine et fournissent des pistes prometteuses pour la recherche future en généralisation hors distribution. / Artificial Intelligence (AI) is a rapidly advancing field, with data-driven approaches known as machine learning, at the forefront of many recent breakthroughs. However, while machine learning have shown remarkable performance in tasks such as image recognition and generation, text generation and translation, and speech processing, they are known to silently fail under common conditions. This is because modern AI algorithms inherit biases from the data used to train them, leading to incorrect predictions when encountering new data that is different from the training data. This problem is known as distribution shift or out-of-distribution (OOD) failure. This causes modern AI to be untrustworthy and is a significant barrier to the safe widespread deployment of AI.
Failing to address the OOD generalization failure of machine learning could result in situations that put lives in danger or make it impossible to deploy AI in any significant manner. This thesis aims to tackle this issue and proposes solutions to ensure the safe and reliable deployment of modern deep learning models.
We present three papers that cover different directions in solving the OOD generalization failure of machine learning. The first paper proposes a direct approach that demonstrates improved performance over the state-of-the-art. The second paper lays the groundwork for future research in OOD generalization in time series, while the third paper provides a straightforward solution for fixing generalization failures of large pretrained models when finetuned on downstream tasks. These papers make valuable contributions to the field and provide promising avenues for future research in OOD generalization.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32223 |
Date | 04 1900 |
Creators | Gagnon-Audet, Jean-Christophe |
Contributors | Dumas, Guillaume, Rish, Irina |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0024 seconds