This work presents a new approach of fabricating arrays of electrodes, separated by sub-micrometer gaps allowing the systematic investigation of electric properties of organic semiconductors. The laterally stacked devices are fabricated by using a trench isolation technique for separating different electrical potentials, as it is known for micromachining technologies like Single Crystal Reactive Ion Etching and Metallization (SCREAM). The essential part of this process is the patterning of sub-micrometer trenches onto the silicon substrate in a single lithographic step. Afterwards, the trenches are refilled by SiO2 to allow the precise tuning of the electrode separation gap. The metal electrodes are formed via magnetron sputtering. This technological approach allows us to fabricate device structures with a transport channel length in the range of 100-250 nm by conventional photolithography. In this experiment, three different metals like Au, Co, and Ni were used as the electrode materials, while copper phthalocyanine, being deposited by thermal evaporation in high vacuum, was employed as the organic semiconductor under evaluation. The final aim has been study of spin transport through the organic channel in varied geometry.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:19750 |
Date | 04 December 2013 |
Creators | Ghosh, Joydeep |
Contributors | Geßner, Thomas, Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds