Fiber optical temperature and strain sensors have been extensively investigated for applications in the civil structures to ensure safety and prevent disasters in advance. Most of the demonstrated fiber sensors are based on the silica fibers to form an interferometer by measuring the spectrum wavelength shift caused by the change of the refractive index and fiber length, and the sensitivities, defined as the rate of wavelength shift with respect to temperature or strain, are limited by the small values of thermal-expansion coefficient and thermo-optic effect of the silica materials. To improve the sensitivity, we designed the dual-core As2Se3-PMMA fiber with the PMMA cladding diameter 56.5 times larger than that of the As2Se3 cores, which brings out many interesting sensing applications.
Nonlinear devices have a variety of practical applications including parametric amplification, all-optical switching, super-continuum generation, and sensing applications. Tapered chalcogenide-polymer fiber structures composed of an As2Se3 core and a polymethyl methacrylate (PMMA) cladding are a promising platform for nonlinear applications because the As2Se3 core provides high nonlinearity over the near- and mid-infrared spectral ranges for compact nonlinear devices with low power consumption and the PMMA cladding provides high mechanical strength for easy handling. Advanced As2Se3-PMMA fiber structures such as dual-core fibers that support guided propagation of an even mode and an odd mode will open the way for a variety of novel devices in the near- and mid-IR wavelength range.
In my work I utilized two As2Se3 fibers and a polymethyl methacrylate (PMMA) tube for the fabrication of dual-core As2Se3-PMMA tapers and demonstration of the sensing applications and nonlinear optical effects.
The thesis mainly consists of three parts: the fabrication process, the sensing applications, and the nonlinear applications in the tapered dual-core As2Se3-PMMA fiber.
In the first part, the fabrication process of the tapered dual-core As2Se3-PMMA fiber is introduced. The dual-core As2Se3-PMMA fibers are fabricated using a rod-in-tube method. The images of the setups and fibers in process are listed.
In the second part, a theoretical model for temperature and strain measurement and four sensing applications are introduced. Firstly, we demonstrate an approach for high-sensitivity simultaneous temperature and strain measurement in a dual-core As2Se3-PMMA taper with As2Se3 core diameter of 0.55 μm. High measurement sensitivities are observed for both principal polarization axes of the tapered dual-core As2Se3-PMMA fiber with temperature sensitivities of -115 pm/ºC for axis-1, -35.5 pm/ºC for axis-2, and strain sensitivities of -4.21 pm/με for axis-1 and -3.16 pm/με for axis-2. Secondly, the thermal forces in a dual-core As2Se3-PMMA taper are investigated. A temperature-insensitive strain sensor is proposed and demonstrated based on the thermal forces. Finally, two approaches for temperature and strain sensitivity enhancement are investigated. The first approach is by reducing the value of the variation of the difference between phases of the even and odd modes with respect to wavelength (∂ϕd(λ)/∂λ) and increasing thermal-forces in a dual-core As2Se3-PMMA taper with As2Se3 core diameter of 2.5 μm. The value of ∂ϕd(λ)/∂λ decreases with the As2Se3 core diameter and thermal-forces on the As2Se3 cores are enhanced in the fibers with large PMMA cladding, which work together to enhance the measurement sensitivity. The second approach is based on effective group-velocity matching between the even and odd modes of a dual-core As2Se3-PMMA taper on which an antisymmetric long-period grating is inscribed. The variation of the difference between phases of the even and odd modes with respect to wavelength tends to 0 (∂ϕd(λ)/∂λ→0) near the resonance wavelength of the grating due to the effective group-velocity matching between the two modes, and consequently, thermally-induced change of the difference between phases of the two modes ϕd (λ) leads to a large wavelength shift indicating enhancement of the temperature measurement sensitivity.
In the third part, I study the nonlinear optical effects in the hybrid fibers. Firstly, I demonstrate modulation instability within the normal-dispersion regime in a dual-core As2Se3-PMMA fiber. Then I review the work about the forward stimulated Brillouin scattering and its sensing applications. The radial and torsional-radial guided acoustic modes of silica fibers and tapered dual-core As2Se3-PMMA fibers are investigated experimentally and the preliminary results are presented.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/38697 |
Date | 15 January 2019 |
Creators | Gao, Song |
Contributors | Bao, Xiaoyi |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0022 seconds