Return to search

Cost-benefit Analysis For Various Rehabilitation Strategies

Over the last decade, six major earthquakes that occurred in Turkey dramatically demonstrated the poor performance of the buildings that were designed and constructed far from Turkish seismic code&rsquo / s requirements. The Marmara region, where most of the population and industry is located, is in the active seismic zone. With the rising cost of damages due to earthquakes, the necessity of the cost-benefit analysis for various rehabilitation strategies used in existing buildings has become a major concern for the decision makers who are in the position of making decisions on the building rehabilitation
This study evaluates the performance of two different rehabilitation strategies applied to two five-story reinforced concrete buildings and assesses their cost-benefit
analyses. These buildings were chosen to be representative of the typical residential To carry out the structural analysis of the buildings, three-dimensional models of the buildings were developed using SAP2000 [6]. Two alternative strengthening methods, insertion of reinforced concrete shear walls and application of Carbon Fiber Reinforced Polymers (CFRP) on hallow clay tile infill walls, were used for both of the buildings. While modeling infill walls strengthened with CFRP, two specific modeling attempts proposed by the researchers at Middle East Technical University were used. Pushover analyses were performed to evaluate seismic performance of the buildings. The Life Safety criterion was chosen as the rehabilitation objective. The global and component response acceptability limits were checked and the cost-benefit analysis was performed in order to determine the most attractive rehabilitation alternative.
The results and comparisons given here illustrated that strengthening with shear wall had the most significant improvement on the seismic performance and cost effectiveness of the case study buildings. Outcomes of this study are only applicable to the
buildings employed here and are bound by the assumptions made, approximations used and parameters considered in this study. The findings cannot be generalized for the buildings rehabilitated with CFRP due to lack of the consistent models for CFRP application. More research needs to be conducted to provide solid guidelines and reliable models applicable to the CFRP rehabilitated infill walls.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12605766/index.pdf
Date01 February 2005
CreatorsCetinceli, Serkan
ContributorsYakut, Ahmet
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0019 seconds