Return to search

Fully Distributed Multi-Material Magnetic Sensing Structures for Multiparameter DAS Applications

This dissertation demonstrates the first of its kind distributed magnetic field sensor based on a fiber optic distributed acoustic sensing (DAS) scheme. Ferromagnetic nickel and Metglas® were dispersed internally within a fiber optic preform and then drawn on an in-house fiber optic draw tower to lengths in the kilometers. Due to the close proximity of the ferromagnetic metals and fiber optic core, the magnetostrictive strain response of the ferromagnetic materials when exposed to a magnetic field would perturbate within the fiber cladding and transfer that strain, internally, to the fiber optic core. Strain resulting from the magnetostrictive effect allows the DAS based sensor to accurately translate strain into readable magnetic field data. Due to the high sensitivity seen in this sensor design, multiparameter sources, acoustic and magnetic fields, were tested and validated and a three dimensional magnetic-field vector sensor was proposed.
Numerical analysis of the novel sensor design was first implemented using COMSOL Multiphysics, where inputs such as magnetostrictive element shape, size, distance, and number were first investigated. Upon optimizing system constraints, the sensor design was further modified such that single mode operation was consistent across multiple fiber draws while retaining high strain transfer from the ferromagnetic elements to the fiber optic core. Ferromagnetic material selection was evaluated as a function of the saturation magnetostriction constants and a total of 4 modules were used to fully characterize the complex physics involved in this sensor design.
All fabrication and testing were performed in-house using a full scale 3-story fiber draw tower and custom environmental testing stations to imitate naturally occurring events such as magnetic or acoustic point sources. A unique stacking method was used to embed ferromagnetic nickel and Metglas® into a fiber optic preform which when combined with a custom fiber draw process resulted in consistent multi-material fibers drawn to lengths of 1-km. In-house testing facilities included different types of electromagnetic generators, in addition to a soil test bed, and an outdoor test bed which allowed 100 meters of fiber to be tested simultaneously.
All tested sensors demonstrated high strain transfer capabilities on the order of 0.01-10 μϵ depending on the materials used, ferromagnetic rod number, and core to metal spacing. Due to the sensitivity of the system the difference between AC and DC was distinct, and directional magnetostriction was studied. Transverse and longitudinal magnetic wave propagation was controlled through a solenoid and rectangular Helmholtz coil, both built in-house. A three-dimensional magnetic field vector sensor was proposed due to the success of the magnetic field sensor, and a design was proposed and initially tested to validate direction as a function of field strength and distance.
To summarize, this dissertation explores the first fully distributed magnetic field sensor using DAS based techniques and one of the first multi-material fiber draw processes which can produce consistent single mode fiber up to 1-km. Due to extensive FEA modeling, multiple iterations of the magnetic sensor were fully characterized and an equation describing the relationship between sensor design and strain transfer has been created and validated experimentally. Multi-parameter tests including acoustic and magnetic fields were implemented and an algorithm was developed to separate the mixed signals. Finally, a test was performed to demonstrate the feasibility of sensing magnetic fields directionally. Cumulative results demonstrate a high-quality sensor alternative to current designs which may surpass other magnetic sensors due to innate multi-parameter capabilities, in addition to the inexpensive production cost and extremely long operating lengths. / Doctor of Philosophy / This dissertation demonstrates the first of its kind distributed magnetic field sensor based on a fiber optic distributed acoustic sensing (DAS) scheme. Ferromagnetic nickel and Metglas® were dispersed internally within a fiber optic preform and then drawn on an in-house fiber optic draw tower to lengths in the kilometers. Due to the close proximity of the ferromagnetic metals and fiber optic core, the magnetostrictive strain response of the ferromagnetic materials when exposed to a magnetic field would perturbate within the fiber cladding and transfer that strain, internally, to the fiber optic core. Strain resulting from the magnetostrictive effect allows the DAS based sensor to accurately translate strain into readable magnetic field data. Due to the high sensitivity seen in this sensor design, multiparameter sources, acoustic and magnetic fields, were tested and validated and a three dimensional magnetic-field vector sensor was proposed.
Numerical evaluation of the sensing structure was perused before experimental testing using COMSOL Multiphysics. Experimental and numerical evaluations were compared and showed a high degree of certainty which allowed expedited design modifications. Sensor characterization included scanning electron microscopy, and electron diffraction spectroscopy, which provided insight into material composition and fiber polishing quality. Due to the high-quality results attained in the combined acoustic and magnetic field tests, a final design was proposed to gather magnetic field data as a vector, showing both magnitude and direction. The 3D magnetic field vector sensor was partially validated based on a test which compared intensity with distance and a design and methodology was proposed to fully test and characterize this design.
To summarize, a novel magnetic field sensor, capable of multi-parameter sensing, was proposed and tested experimentally and numerically resulting in a robust and highly sensitive design. The work presented here provides some of the first insights into multi-material fiber fabrication, an equation which provides an estimated relationship between magnetostrictive strain transfer onto a fiber optic core and the perceived DAS based sensor results, as well as a first of its kind multi-parameter distributed acoustic and magnetic field sensor.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115589
Date29 June 2022
CreatorsHileman, Zachary Daniel
ContributorsMaterials Science and Engineering, Pickrell, Gary R., Zhu, Yizheng, Homa, Daniel S., Martin, Eileen R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.003 seconds