1- Généralisation des fibrés instantons spéciaux sur P^2n+1 qui est appelée les fibrés (b+1)-instantons pondérés sur P^2n+1. On a étudié la stabilité de ces fibrés dans le cas où b=0. On a étudié la déformation de fibrés de Steiner pondérés sur P^2n+1. 2- Généralisation des fibrés de Tango sur P^n qui est appelée les fibrés de Tango pondérés sur P^n. On a étudié la stabilité de ces fibrés vectoriels. On a étudié la déformation de ces fibrés vectoriels. 3- Construction de fibrés vectoriels de rang 3 sur P^4. On a étudié la condition pour avoir des fibrés vectoriels qui ne sont pas isomorphes à une somme directe de trois fibrés en droites. / 1 - Generalization of the special instanton bundles on P^2n+1 which is called the (b+1)-weighted instanton bundles on P^2n+1. The stability of these vector bundles was studied in the case b=0. We studied the deformation of weighted Steiner bundles on P^2n+1. 2 - Generalization of the Tango bundles on P^n which is called the weighted Tango bundles on P^n. The stability of these vector bundles has been studied. The deformation of these vector bundles has been studied. 3 - Construction of vector bundles of rank 3 on P^4. We have studied the condition to have vector bundles that do not isomorphic to a direct sum of three line bundles.
Identifer | oai:union.ndltd.org:theses.fr/2017PA066076 |
Date | 08 March 2017 |
Creators | Bahtiti, Mohamed |
Contributors | Paris 6, Drézet, Jean-Marc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds