Return to search

Numerical modelling of composite materials based on a combined manufacturing-crash simulation

Fibre reinforced plastics are widely used for energy dissipating parts. Due to their superior strength to density ratio they provide a high performance and are ideal for lightweight design for crashworthiness. For this, it is essential that the mechanical behaviour of fibre reinforced composites can be predicted correctly by simulation. However, due to the complex inner structure, this is still a challenging task, in particular in case of highly nonlinear crash loading. In this work, a new purely virtual method is developed, which derives the complex fibre structure of a filament wound tube by a chain of numerical simulations. Thereby a finite element simulation of the fibre placement, taking into account the occurring physical effects, constitutes the fundamental base. Based on the results of the manufacturing simulation, a 3D fibre architecture is generated and compared to the real existing structure. The fibre structure, combined with an automatic matrix implementation algorithm, subsequently provides a finite element model of the composite on meso-scale. Using micro-scale analysis, effective material properties for the roving structure, based on filament-matrix interaction, are derived. Incorporation of the effective properties in a USER MATERIAL model completes the finite element model generation. The mesoscale model is subsequently used to analyse the filament wound tube in terms of quasi-static and crash loading. Finally, the obtained results are compared to experimental observations.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:667308
Date January 2014
CreatorsBerger, Andre
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/8925

Page generated in 0.0019 seconds