Return to search

Růst buněk na biomateriálech pro kožní náhrady a kryty / Cell growth on biomaterials for skin replacements and wound dressings

Tissue engineering is an emerging interdisciplinary field developing new ways of treatment of patient's tissue defects using artificial substitutes. Skin tissue engineering is developing skin substitutes and wound dressings that would replace current treatment using autologous, allogeneic or xenogenic substitutes. There are high demands on materials which should serve as a scaffolds for dermal fibroblasts and keratinocytes. They must be non-cytotoxic and biodegradable with a rate proportional to formation of a new tissue. The materials should support adhesion and proliferation of the cells and even they could release growth factors and antimicrobial substance to enhance healing and new tissue formation. In this master thesis, the cell adhesion and proliferation were evaluated on sodium carboxymethyl cellulose (Hcel® NaT), poly-ε-caprolactone (PCL), poly-L-lactide-co-ε-caprolactone (PLA/PCL) and cellulose acetate (AC) nanofiber membranes. Primary human dermal fibroblasts and HaCaT cell line keratinocytes were selected for evaluation. The cell adhesion was observed by fluorescent microscopy, the proliferation was determined by metabolic assay (WST-1) and the material cytotoxicity was evaluated in xCELLigence® system. Materials did not show cytotoxic effects on the cells. However, the materials did...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:343068
Date January 2016
CreatorsKudláčková, Radmila
ContributorsBačáková, Lucie, Rösel, Daniel, Eckhardt, Adam
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0019 seconds