Return to search

The Molecular Mechanisms of Thrombus Growth and Stability

abstract: Thrombus (blood clot) formation is at the roots of hemostasis and pathological thrombosis. Although many studies have successfully elucidated the cellular and molecular mechanisms underlying thrombus formation, there is still a void in understanding the processes limiting thrombus growth beyond that needed for stabilization. As a hemostatic thrombus grows, its surface consisting primarily of platelets changes to that composed of fibrin, which mechanically stabilizes the thrombus. Formation of fibrin ceases after some time; however, it is unclear why this fibrin is non-thrombogenic. This is puzzling since fibrin is known to support strong integrin-mediated adhesion of both platelets and leukocytes in vitro. Therefore, it would be expected that the fibrin surface of hemostatic thrombi in the circulation also support accumulation of these cells and thus continuous thrombus growth or degradation. Nevertheless, many in vivo studies did not detect any accumulation of blood cells including platelets at the fibrin surfaces of thrombi. This finding suggests the existence of natural processes that modulate the adhesive properties of fibrin to ensure proper regulation of thrombus growth, stability and degradation. In this dissertation, I document and discuss the findings supporting the existence of anti-adhesive mechanisms and their physiological relevance in surface-mediated control of thrombus growth and stability. The studies discussed in my dissertation have the potential to establish a novel aspect of hemostasis. Furthermore, it may provide new insights into the intricate and dynamic interplay between the mechanisms underlying hemostatic balance, which is essential to understanding the dysfunction of this process during pathological conditions. / Dissertation/Thesis / Doctoral Dissertation Molecular and Cellular Biology 2016

Identiferoai:union.ndltd.org:asu.edu/item:39429
Date January 2016
ContributorsOwaynat, Hadil (Author), Chandler, Douglas E (Advisor), Wilson-Rawls, Norma J (Committee member), Lake, Douglas F (Committee member), Baluch, Debra P (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format173 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0017 seconds