Return to search

Role of differential heparan sulphate sulphation in Fgf/Erk signalling during mouse telencephalic development

Heparan sulphate proteoglycans (HSPGs) are cell surface/secreted molecules expressed by all cells. HSPGs consist of carbohydrate side-chains attached to a core protein and are involved in regulating key signalling pathways in the developing mammalian brain via sugar-protein interactions. It has been hypothesized, in the ‘heparan sulphate (HS) code hypothesis’, that the specificity for the interaction between the HSPGs and particular signalling pathways is encoded by its HS side-chain. HS has an enormous variety of structures due to postsynthetic modification. Hs2st and Hs6st1 are enzymes involved in generating different HS structures by sulphating the 2-carbon or 6-carbon molecule of the sugar backbone respectively. Fibroblast growth factors (Fgfs) are a family of signalling molecules crucial for forebrain development. Some of its members such as Fgf8 are morphogens which pattern the forebrain via regulated gradient formation while others such as Fgf2 drive neurogenesis and cell proliferation. One of the main molecular consequences of Fgf signalling is activation of extracellular signal-regulated kinase (Erk) where the activation of Erk then drives developmental events such as neurogenesis or cell migration. Based on previous studies on the HS code hypothesis, we hypothesized that differential sulphation regulates Fgf signalling in a specific manner depending on the HS sulphation pattern. We performed binding assays on Hs2st-/- mice to ascertain the molecular mechanism behind the role of differential sulphation in Erk signalling through Fgf2 in the forebrain. We found that differential sulphation also has an important role to play in regionally targeting Fgf2/Erk signalling through regulating the formation of active signalling complexes. Studying the Fgf8/Erk signalling axis at E14.5 developing mouse corticoseptal boundary (CSB) revealed increased Fgf8 levels and Erk hyperactivation in both Hs2st and Hs6st1 null mutants. The dysregulation of Fgf8/Erk signalling at the CSB also highly correlates with the high expression of Hs2st and Hs6st1 at the CSB. A closer look into the molecular phenotypes of Hs2st-/- and Hs6st1-/- CSB revealed differences between them in which Hs6st1-/- CSB has higher Fgf8 levels compared to Hs2st-/- CSB. To elucidate the mechanisms underlying Hs2st and Hs6st1 role at the CSB, we investigated the formation and interpretation of Fgf8/Erk signalling gradient using Fgf8 bead assays in mice with Hs2st and Hs6st1 loss of function throughout development. We found that differential sulphation has a complex effect on Fgf8 gradient formation and interpretation in the forebrain in which Hs2st acts to stabilise the Fgf8 distribution through regulating Fgf8 levels through time while Hs6st1 acts to stabilise the Fgf8 distribution by maintaining the shape of the Fgf8 gradient through restricting Fgf8 levels during the formation of the Fgf8 distribution. In addition, we found Hs2st and Hs6st1 both function to increase the sensitivity of the CSB to Fgf8 for an Erk response although through different modes of action. Therefore, we conclude that differential HS sulphation plays a specific role in Fgf/Erk signalling depending on the HS sulphation pattern.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:735702
Date January 2016
CreatorsChan, Wai Kit
ContributorsPratt, Thomas ; Price, David
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/25718

Page generated in 0.0015 seconds