Return to search

Testing bone cell models responsive to a soluble form of klotho

Indiana University-Purdue University Indianapolis (IUPUI) / Fibroblast growth factor-23 (FGF23) is a hormone produced in bone that acts upon the kidney to control blood phosphate and 1,25-(OH)2 vitamin D concentrations. Chronic kidney disease-mineral bone disorder (CKD-MBD) is a major public health problem, affecting 1 in 8 individuals. These patients can have markedly elevated FGF23 at end stage disease which is associated with metabolic bone anomalies, left ventricular hypertrophy, as well as increased mortality (>6-fold). The FGF23 co-receptor αKlotho (αKL) is a membrane-bound protein (mKL) that forms heteromeric complexes with FGF receptors (FGFRs) to initiate intracellular signaling. It also circulates as a cleavage product of mKL (‘cleaved’, or cKL). Previously, a patient with increased plasma cKL from a balanced translocation between chromosomes 9 and 13 in the KLOTHO gene presented with metabolic bone disease and a complex endocrine profile, despite hypophosphatemia. The lack of a reliable cell model in which to study potential FGF23-cKL interactions is a major hurdle for the field of phosphate metabolism. The goal of the present studies was to test and characterize bone cell lines that may respond to FGF23 and/or cKL, permitting study of novel aspects of phosphate handling and control of FGF23 expression. It was confirmed that stable delivery of cKL via AAV2/8 to wild type (WT) and KL-KO mice resulted in highly elevated bone FGF23 mRNA. MC3T3 (mouse) and ROS (rat) osteoblastic cell lines were tested for p-ERK1/2 responses to control FGFs, as well as FGF23 and cKL, alone or in combination. Importantly, both cell lines demonstrated responsiveness to FGF23+cKL only, and not the individual factors. To test responsiveness at the cell level, EGR1 mRNA was tested as an index of FGFR activity and showed modest increases with the same treatments, supporting that other factors may be required for full transcriptional effects. The present studies show that MC3T3 have FGF-dependent signaling capabilities, and that the combination of FGF23+cKL is required for efficient MAPK signaling. These results demonstrated that cKL provision is permissive for efficient FGF23 signaling in bone, and revealed important implications for the regulation of FGF23 and cKL in Mendelian, and common, genetic disorders of phosphate handling and biomineralization.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/11872
Date11 1900
CreatorsBonfitto, Anna
ContributorsWhite, Kenneth E.
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis
RightsAttribution-NonCommercial 3.0 United States, http://creativecommons.org/licenses/by-nc/3.0/us/

Page generated in 0.002 seconds