Return to search

Modelos de distribuição potencial em escala fina: metodologia de validação em campo e aplicação para espécies arbóreas / Potential distribution models in fine scale: validation methodology in the field and application to tree species

Submitted by Milena Rubi (milenarubi@ufscar.br) on 2017-02-15T14:11:09Z
No. of bitstreams: 1
FERREIRA_Larissa_2015.pdf: 46221411 bytes, checksum: ae8a0358ebf5e33024f58e5c75dae037 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-02-15T14:11:21Z (GMT) No. of bitstreams: 1
FERREIRA_Larissa_2015.pdf: 46221411 bytes, checksum: ae8a0358ebf5e33024f58e5c75dae037 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-02-15T14:11:31Z (GMT) No. of bitstreams: 1
FERREIRA_Larissa_2015.pdf: 46221411 bytes, checksum: ae8a0358ebf5e33024f58e5c75dae037 (MD5) / Made available in DSpace on 2017-02-15T14:11:38Z (GMT). No. of bitstreams: 1
FERREIRA_Larissa_2015.pdf: 46221411 bytes, checksum: ae8a0358ebf5e33024f58e5c75dae037 (MD5)
Previous issue date: 2015-11-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Some conservation actions require the knowledge of the geographical distribution of species, however, this knowledge is far from being achieved for most species. The species distribution models (SDMs) have proved a useful tool to predict the distribution of species and guide field research to find new records. The SDMs using field data occurrence and environmental variables to indicate potential sites for the occurrence of a species. The quality and quantity of the data used are important to a successful result prediction models and application to conservation. The choice of environmental data and the algorithm and their settings are important for the development of models, the choice of these variables have directly influences to the quality of the models. Another very important step in modeling is the quality assessment and validation of the model, is that it may decrease the risk of accepting as true models with gross errors. The objective of this study is to evaluate the applicability of models generated by MaxEnt to find new populations of plants considering different data configurations used. For this, considering that the field validation is the most appropriate in the literature, but the most costly, the first chapter proposes a validation methodology of the models as easy application field. The methodology was able to find new records in the field, therefore, indicated for the validation of models. In the second chapter, knowing of the existence of a wide variety of variables that influence the performance of the models, the aim was to test the influence of the sample size, the spatial bias, the set of climate data and settings available for the MaxEnt algorithm in the areas of prediction potential distribution. The results demonstrated that the use of sampling and climate data restricted to the limit of the study area and also the use of soil data generate more accurate models. / Algumas ações conservacionistas necessitam do conhecimento da distribuição geográfica das espécies, porém, esse conhecimento está longe de ser alcançado para a maioria das espécies. Os modelos de distribuição de espécies (MDEs) têm se mostrado uma ferramenta útil para prever a distribuição das espécies e guiar pesquisas de campo para encontrar novos registros. Os MDEs utilizam dados de ocorrência e variáveis ambientais para indicar locais potenciais para a ocorrência de uma espécie. A precisão e quantidade dos dados utilizados são importantes para um bom resultado de predição dos modelos e aplicação à conservação. A escolha dos dados ambientais e do algoritmo e suas configurações são essenciais para o desenvolvimento dos modelos, pois influenciam diretamente na qualidade dos mesmos. Outra etapa bastante importante na modelagem é a validação do modelo, pois é ela que diminui o risco de aceitar como verdadeiros modelos que possuem erros grosseiros. O objetivo principal deste estudo é avaliar a aplicabilidade de modelos gerados pelo MaxEnt para encontrar populações de plantas, considerando diferentes configurações dos dados utilizados. Para isso o primeiro capítulo propõe uma metodologia de validação dos modelos em campo de fácil aplicação, uma vez que a validação em campo é a mais indicada pela literatura. A metodologia proposta no capítulo um é uma adaptação ao método de “caminhamento” ou método expedito de levantamento e caracterização da vegetação. A metodologia proposta foi eficaz para a localização das espécies em campo e mostrou que a caracterização da vegetação é uma etapa importante para a interpretação dos resultados, uma vez que explicou a ausência de duas espécies em áreas onde o modelo havia previsto presença. Apresenta como principal desvantagem a necessidade de pessoas experientes para o reconhecimento das espécies de plantas para a sua aplicação de forma agilizada. No segundo capítulo, foi testada a influência da área de amostragem, do conjunto de dados climáticos e das configurações do algoritmo Maxent na predição de áreas potenciais de distribuição. Os resultados obtidos demonstraram que o uso de dados amostrais e climáticos restritos aos limites da área de interesse para a busca das espécies e a inclusão de dados de solo geram modelos mais acurados. Mostrou também que as diferentes configurações do Maxent geraram modelos muito similares.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/8521
Date11 November 2015
CreatorsFerreira, Larissa Campos
ContributorsKoch, Ingrid
PublisherUniversidade Federal de São Carlos, Câmpus Sorocaba, Programa de Pós-graduação em Diversidade Biológica e Conservação, UFSCar
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds