Return to search

Radiation effects on power MOSFETs under simulated space radiation conditions

Application of power MOSFETs in spaceborne power converters was simulated by exposing devices to low-dose-rate ionizing radiation. Both radiation-hardened and nonhardened devices were tested with constant and switched gate biases during irradiation. In addition, some of the devices were under load. The threshold-voltage shifts were strongly bias dependent. The threshold-voltage shift of the nonhardened parts was approximately dose-rate independent, while the hardened parts exhibited significant dose-rate dependence. A pre-anneal dose-rate dependence was found for the interface-state buildup of the switched and positively biased devices, but the results for the switched devices were qualitatively different than those for the positively biased devices. The buildup of interface trapped charge was found to be the primary contributor to mobility degradation, which results in reduced drive capability and slower operation of the devices. These results indicate that new methods need to be utilized to accurately predict the performance of power MOSFETs in space environments.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/277024
Date January 1989
CreatorsWahle, Peter Joseph, 1961-
ContributorsSchrimpf, Ronald D.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.002 seconds