This thesis explores the role mutualist pollinators and their symbionts play in the genetic structuring and speciation of their host plants along an elevational gradient in Papua New Guinea. Using the fig and fig-wasp mutualism as a model system, we employed high-throughput sequencing techniques to explore fine-scale population genomics of both fig and wasps along their elevational range. We found there to be clear lowland and highland clustering of tree populations along the gradient, often with a mid-elevation contact zone. In the case of the pollinating wasps, we retrieved the same clustering except in this case, the genetic difference between clusters was high enough as to consider them as separate species. This result supports evidence from other studies challenging the cospeciation paradigm of one wasp species per fig species. In addition, we explore ecological traits which may promote, or at least, maintain, reproductive isolation between fig (sub)species along with behavioural preference tests from pollinating wasps. In order to further investigate the mechanisms promoting wasp speciation along the gradient, we describe Wolbachia infection status as well as strain type. Wolbachia-induced cytoplasmic incompatibility (CI) is often invoked as a possible speciation agent since it can rapidly provoke and maintain reproductive isolation between otherwise freely interbreeding insect populations. Finally, we explore non-pollinating fig wasp (NPFW) diversity along the gradient for a subset of our focal species. Our study reveals that there is a tight relationship between NPFW diversity and host species, and a mid-elevation peak.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:396467 |
Date | January 2019 |
Creators | SOUTO VILARĂ“S, Daniel |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds