Vision provides the primary means by which many animals distinguish foreground objects from their background and coordinate locomotion through complex environments. The present thesis focuses on mechanisms within the visual system that afford figure-ground segregation and self-motion perception. These processes are modeled as emergent outcomes of dynamical interactions among neural populations in several brain areas. This dissertation specifies and simulates how border-ownership signals emerge in cortex, and how the medial superior temporal area (MSTd) represents path of travel and heading, in the presence of independently moving objects (IMOs).
Neurons in visual cortex that signal border-ownership, the perception that a border belongs to a figure and not its background, have been identified but the underlying mechanisms have been unclear. A model is presented that demonstrates that inter-areal interactions across model visual areas V1-V2-V4 afford border-ownership signals similar to those reported in electrophysiology for visual displays containing figures defined by luminance contrast. Competition between model neurons with different receptive field sizes is crucial for reconciling the occlusion of one object by another. The model is extended to determine border-ownership when object borders are kinetically-defined, and to detect the location and size of shapes, despite the curvature of their boundary contours.
Navigation in the real world requires humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature. In primates, MSTd has been implicated in heading perception. A model of V1, medial temporal area (MT), and MSTd is developed herein that demonstrates how MSTd neurons can simultaneously encode path curvature and heading. Human judgments of heading are accurate in rigid environments, but are biased in the presence of IMOs. The model presented here explains the bias through recurrent connectivity in MSTd and avoids the use of differential motion detectors which, although used in existing models to discount the motion of an IMO relative to its background, is not biologically plausible. Reported modulation of the MSTd population due to attention is explained through competitive dynamics between subpopulations responding to bottom-up and top- down signals.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/15224 |
Date | 17 March 2016 |
Creators | Layton, Oliver W. |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0019 seconds