Return to search

Signaling specificity in the filamentous growth pathway of Saccharomyces cerevisiae

xii, 41 p. : ill. / Cells convey information through signaling pathways. Distinct signaling pathways often rely on similar mechanisms and may even use the same molecules. With a variety of signals conveyed by pathways that share components, how does the cell maintain the integrity of each pathway?

Budding yeast provides an example of multiple signaling pathways utilizing the same components to transduce different signals. The mating pathway, the high osmolarity glycerol (HOG) pathway and the filamentous growth (FG) pathway each respond to different environmental conditions and generate unique cellular responses. Despite the individuality of the pathways, they each contain a core group of the same signaling proteins. How does the cell generate a variety or responses utilizing the same group of proteins? Both the mating and HOG pathways utilize scaffolding factors that concentrate pathway components to the location of activation and in the case of the mating pathway alter the kinetics of the interaction. In addition, negative regulatory mechanisms operate in both the mating and HOG pathways. These negative regulatory mechanisms are understood in detail for the mating pathway but not for the HOG pathway. Mechanisms for providing specificity for the FG pathway are as yet unknown.

The purpose of this work is to elucidate the mechanisms that provide specificity to the FG pathway. The search for specificity factors was done through both a random mutagenesis screen and a synthetic genetic array screen, looking for mutants in which activation of the FG pathway led to inappropriate activation of the HOG pathway. The random mutagenesis screen resulted in a large number of mutants that I organized into five complementation groups. The identity of the gene mutated in the largest complementation group was sought using a variety of methods including complementation with the yeast deletion collection and whole genome sequencing. A synthetic genetic array was screened as an alternative method to identify genes necessary for FG pathway specificity. These experiments have resulted in a list of candidate genes, but thus far have not yet led to any discernable mechanism for maintenance of FG pathway specificity. / Committee in charge: Karen Guillemin, Chairperson;
George F. Sprague Jr., Advisor;
Tom Stevens, Member;
Tory Herman, Member;
Diane Hawley, Outside Member

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/11260
Date03 1900
CreatorsRomelfanger, Claire Theresa, 1982-
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationUniversity of Oregon theses, Dept. of Biology, Ph. D., 2011;

Page generated in 0.0021 seconds