The field of organic electronics has become an increasingly important field of research in recent years. Organic based semiconductors have the potential for creating inexpensive, solution processed devices on flexible substrates. Some of the applications of organic semiconductors include organic field effect transistors, organic light emitting diodes and organic photovoltaics.
Functionalized pentacenes have been proven to be viable donor materials for use in organic photovoltaic devices. The goal of this research is to synthesize and test the viability of novel electron deficient pentacenes and pentacene based materials as acceptors to be used as drop-in replacements for PCBM in bulk-heterojunction organic solar cells.
Our goal was to tune and improve the efficiencies of these solar cells in a two pronged approach. First we tuned the open circuit voltage of these devices by determining the optimal energy levels of these acceptors by varying the number of electron withdrawing substituents on the acene core. We also tuned the short circuit current by chemically altering the solid state packing and optimizing device processing conditions. A preliminary structure-property relationship of these small molecule acceptors and photovoltaic device efficiency was established as a result.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1144 |
Date | 01 January 2011 |
Creators | Shu, Ying |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Doctoral Dissertations |
Page generated in 0.0021 seconds