Return to search

Transmitter and receiver design for inherent interference cancellation in MIMO filter-bank based multicarrier systems

Multicarrier (MC) Modulation attracts a lot of attention for high speed wireless transmissions because of its capability to cope with frequency selective fading channels turning the wideband transmission link into several narrowband subchannels whose equalization, in some situations, can be performed independently and in a simple manner. Nowadays, orthogonal frequency division multiplexing (OFDM) with the cyclic prefix (CP) insertion is the most widespread modulation among all MC modulations, and this thanks to its simplicity and its robustness against multipath fading using the cyclic prefix. Systems or standards such as ADSL or IEEE802.11a have already implemented the CP-OFDM modulation. Other standards like IEEE802.11n combine CP-OFDM and multiple-input multiple-output (MIMO) in order to increase the bit rate and to provide a better use of the channel spatial diversity. Nevertheless, CP-OFDM technique causes a loss of spectral efficiency due to the CP as it contains redundant information. Moreover, the rectangular prototype filter used in CP-OFDM has a poor frequency localization. This poor frequency localization makes it difficult for CP-OFDM systems to respect stringent specifications of spectrum masks.To overcome these drawbacks, filter-bank multicarrier (FBMC) was proposed as an alternative approach to CP-OFDM. Indeed, FBMC does not need any CP, and it furthermore offers the possibility to use different time-frequency well-localized prototype filters which allow much better control of the out-of-band emission. In the literature we find several FBMC systems based on different structures. In this thesis, we focus on the Saltzberg's scheme called OFDM/OQAM (or FBMC/OQAM). The orthogonality constraint for FBMC/OQAM is relaxed being limited only to the real field while for OFDM it has to be satisfied in the complex field. Consequently, one of the characteristics of FBMC/OQAM is that the demodulated transmitted symbols are accompanied by interference terms caused by the neighboring transmitted data in time-frequency domain. The presence of this interference is an issue for some MIMO schemes and until today their combination with FBMC remains an open problem.The aim of this thesis is to study the combination between FBMC and MIMO techniques, namely spatial multiplexing with ML detection. In the first part, we propose to analyze different intersymbol interference (ISI) cancellation techniques that we adapt to the FBMC/OQAM with MIMO context. We show that, in some cases, we can cope with the presence of the inherent FBMC interference and overcome the difficulties of performing ML detection in spatial multiplexing with FBMC/OQAM. After that, we propose a modification in the conventional FBMC/OQAM modulation by transmitting complex QAM symbols instead of OQAM ones. This proposal allows to reduce considerably the inherent interference but at the expense of the orthogonality condition. Indeed, in the proposed FBMC/QAM,the data symbol and the inherent interference term are both complex. Finally, we introduce a novel FBMC scheme and a transmission strategy in order to avoid the inherent interference terms. This proposed scheme (that we call FFT-FBMC) transforms the FBMC system into an equivalent system formulated as OFDM regardless of some residual interference. Thus, any OFDM transmission technique can be performed straightforwardly to the proposed FBMC scheme with a corresponding complexity growth. We develop the FFT-FBMC in the case of single-input single-output (SISO) configuration. Then, we extend its application to SM-MIMO configuration with ML detection and Alamouti coding scheme.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00923184
Date07 November 2012
CreatorsZakaria, Rostom
PublisherConservatoire national des arts et metiers - CNAM
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0023 seconds