This dissertation thesis deals with the methods for processing image data in X-ray microtomography and digital holographic microscopy. The work aims to achieve significant acceleration of algorithms for tomographic reconstruction and image reconstruction in holographic microscopy by means of optimization and the use of massively parallel GPU. In the field of microtomography, the new GPU (graphic processing unit) accelerated implementations of filtered back projection and back projection filtration of derived data are presented. Another presented algorithm is the orientation normalization technique and evaluation of 3D tomographic data. In the part related to holographic microscopy, the individual steps of the complete image processing procedure are described. This part introduces the new orignal technique of phase unwrapping and correction of image phase damaged by the occurrence of optical vortices in the wrapped image phase. The implementation of the methods for the compensation of the phase deformation and for tracking of cells is then described. In conclusion, there is briefly introduced the Q-PHASE software, which is the complete bundle of all the algorithms necessary for the holographic microscope control, and holographic image processing.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:234602 |
Date | January 2015 |
Creators | Kvasnica, Lukáš |
Contributors | Číp, Ondřej, Štarha, Pavel, Chmelík, Radim |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0014 seconds