Return to search

Extensions entre séries principales p-adiques et modulo p d'un groupe réductif p-adique déployé / Extensions between p-adic and mod p principal series of a split p-adic reductive group

Cette thèse est une contribution à l'étude des représentations p-adiques (c'est-à-dire continues unitaires sur des espaces de Banach p-adiques) et modulo p (c'est-à-dire lisses sur un corps fini de caractéristique p) d'un groupe réductif p-adique déployé G.Nous déterminons les extensions entre séries principales p-adiques et modulo p de G Pour cela, nous calculons le delta-foncteur H•OrdB des parties ordinaires dérivées d'Emerton relatif à un sous-groupe de Borel sur une série principale en utilisant une filtration de Bruhat.Nous déterminons également les extensions d'une série principale par une représentation ordinaire (c'est-à-dire obtenue par induction parabolique à partir d'une représentation spéciale du Levi tordue par un caractère), ainsi que les extensions de Yoneda de longueur supérieure entre séries principales modulo p sous une conjecture d'Emerton vraie pour GL2.Nous montrons de plus qu'il n'existe pas de « chaîne » de trois séries principales p-adiques ou modulo p distinctes de G. Pour cela, nous calculons partiellement le delta-foncteur H•OrdP relatif à un sous-groupe parabolique quelconque sur une série principale. En exploitant ce résultat, nous prouvons une conjecture de Breuil et Herzig sur l'unicité de certaines représentations p-adiques de G dont les constituants sont des séries principales, ainsi que son analogue modulo p.Enfin, nous énonçons une nouvelle conjecture sur les extensions entre représentations modulo p irréductibles de G obtenues par induction parabolique à partir d'une représentations supersingulière du Levi. Nous prouvons cette conjecture pour les extensions par une série principale. / This thesis is a contribution to the study of p-adic (i.e. unitary continuous on p-adic Banach spaces) and mod p (i.e. smooth over a finite field of characteristic p) representations of a split p-adic reductive group G.We determine the extensions between p-adic and mod p principal series of G. In order to do so, we compute Emerton's delta-functor H•OrdB of derived ordinary parts with respect to a Borel subgroup on a principal series using a Bruhat filtration.We also determine the extensions of a principal series by an ordinary representation (i.e. parabolically induced from a special representation of the Levi twisted by a character), as well as the Yoneda extensions of higher length between mod p principal series under a conjecture of Emerton true for GL2.Moreover, we show that there exists no “chain” of three distinct p-adic or mod p principal series of G. In order to do so, we partially compute the delta-functor H•OrdP with respect to any parabolic subgroup on a principal series. Exploiting this result, we prove a conjecture of Breuil and Herzig on the uniqueness of certain p-adic representations of G whose constituents are principal series, as well as its mod p analogue.Finally, we formulate a new conjecture on the extensions between irreducible mod p representations of G parabolically induced from a supersingular representation of the Levi. We prove this conjecture for extensions by a principal series.

Identiferoai:union.ndltd.org:theses.fr/2014PA112411
Date11 December 2014
CreatorsHauseux, Julien
ContributorsParis 11, Breuil, Christophe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0024 seconds