Neste trabalho uma nova estratégia de combinação de filtros adaptativos é apresentada e estudada. Inspirada por esquemas incrementais e filtragem adaptativa cooperativa, a combinação convexa usual de filtros em paralelo e independentes é reestruturada como uma configuração série-cooperativa, sem aumento da complexidade computacional. Dois novos algoritmos são projetados utilizando Recursive Least-Squares (RLS) e Least-Mean-Squares (LMS) como subfiltros que compõem a combinação. Para avaliar a performance da estrutura incremental, uma análise de média quadrática é realizada. Esta é feita assumindo que os combinadores têm valores fixos, de forma a permitir o estudo da universalidade da estrutura desacoplada da dinâmica do supervisor. As simulações realizadas mostram uma boa concordância com o modelo teórico obtido. / In this work a new strategy for combination of adaptive filters is introduced and studied. Inspired by incremental schemes and cooperative adaptive filtering, the standard convex combination of parallel-independent filters is rearranged into a series-cooperative configuration, while preserving computational complexity. Two new algorithms are derived employing Recursive Least-Squares (RLS) and Least-Mean-Squares (LMS) algorithms as the component filters. In order to assess the performance of the incremental structure, tracking and steady-state mean-square analysis is derived. The analysis is carried out assuming the combiners are fixed, so that the universality of the new structure may be studied decoupled from the supervisor\'s dynamics. The resulting analytical model shows good agreement with simulation results.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-04102012-155339 |
Date | 14 February 2012 |
Creators | Lopes, Wilder Bezerra |
Contributors | Lopes, Cassio Guimarães |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0069 seconds