Return to search

An Artificial Neural Network for Bankruptcy Prediction

Assessing the financial health of organizations remains a topic of great interest to economists, financial institutions, and invested stakeholders. For more than a century, research into financial distress has focused primarily on traditional applications of statistical analysis; however, modern advances in computational efficiency have created a significant opportunity for more sophisticated approaches. This thesis investigates the application of artificial intelligence on company bankruptcy prediction. The proposed neural network model is evaluated using the Polish Companies Bankruptcy dataset and yields a 5-year prediction accuracy of 96.5% and an AUC (area under receiver operating characteristic curve) measure of 92.4%.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3915
Date01 June 2021
CreatorsMagdefrau, Walter D
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0018 seconds