Return to search

Předpovídání pomocí neuronových sítí počas krize covid-19 / Forecasting with neural network during covid-19 crisis

The thesis concerns the topic of forecasting using Neural Networks, particu- larly the return and volatility forecasting in the volatile period of Covid-19. The thesis uses adjusted close daily data from Jan 1, 2000, until Jan 1, 2021, of the S&P index and Prague Exchange Stock index (PX). The comparison was between the vanilla econometrical model, a neural network model, and a hybrid neural network model. Hybrid neural networks were constructed with an additional feature column of the fitted econometrical model. Additionally to comparing the prediction, a risk-return trade-o analysis of the forecasted series was conducted. The test period for all models was from Jan 1, 2020, until Jan 1, 2021, where predictions were made. During the test period, MSE be- tween predicted and true values was extracted and compared. The results are that the hybrid model outperformed both econometrical as well as only neural networks models. Furthermore, the risk-return trade-o forecast provided by the hybrid model fares better than the other ones. JEL Classification C53, C81 Keywords Financial Time Series, Forecasting, Neural Net- works, ARIMA, GARCH Title Forecasting with Neural Network during Covid- 19 Crisis Author's e-mail tiep.luud@gmail.com Supervisor's e-mail barunik@fsv.cuni.cz

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:451771
Date January 2021
CreatorsLuu Danh, Tiep
ContributorsBaruník, Jozef, Kukačka, Jiří
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds