Free vibration of beam with moderate thickness is analyzed in the present study. Plane strain finite element is employed, which is based on 2-D elasticity. The conventional displacement-type variational principle is combined with Reissner¡¦s principle and a mixed-type variational formulation is derived. With such formulation, stresses, as well as displacements, are the primacy variables and both boundary conditions can be imposed exactly and simultaneously.
Beams with various aspect ratios and boundary conditions are analyzed. Vibration frequencies and modes are obtained and compared to those by Euler¡¦s beam theory, Timoshenko beam theory, higher-order theory and displacement-type plane strain finite element method to see the effects of 2-D elasticity beam analysis compared to traditional 1-D theories, and the satisfying of stress boundary conditions, in addition to the displacement ones.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0904104-070859 |
Date | 04 September 2004 |
Creators | Jang, Li-Shiun |
Contributors | Shyue-Jian Wu, Ming-Hwa Jen, Chorng-Fuh Liu |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0904104-070859 |
Rights | restricted, Copyright information available at source archive |
Page generated in 0.002 seconds