Return to search

Finite-element analysis of delamination in CFRP laminates : effect of material randomness

Laminated carbon fibre-reinforced polymer (CFRP) composites are already well established in structural applications where high specific strength and stiffness are required. Damage in these laminates is usually localised and may involve numerous mechanisms, such as matrix cracking, laminate delamination, fibre debonding or fibre breakage. Microstructures in CFRPs are non-uniform and irregular, resulting in an element of randomness in the localised damage. This may in turn affect the global properties and failure parameters of components made of CFRPs. This raises the question of whether the inherent stochasticity of localised damage is of significance for application of such materials. This PhD project is aimed at developing numerical models to analyze the effect of material randomness on delamination damage in CFRP materials by the implementation of the cohesive-zone model (CZM) within the framework of the finite-element (FE) method. Both the unidirectional and cross-ply laminates subjected to quasi-static loading conditions were studied. The initiation and propagation in delamination of unidirectional CFRP laminates were analyzed. The CZM was used to simulate the progress of that failure mechanism in a pre-cracked double-cantilever beam (DCB) specimen loaded under mode-I employing initially, a two-dimensional FE model. Model validation was then carried out comparing the numerical results with experimental data. The inherent microstructural stochasticity of CFRP laminates was accounted for in the simulations, and various statistical realizations for a half-scatter of 50% of fracture energy were performed, based on the approximation of that parameter with the Weibull s two-parameter probability density function. More detailed analyses were undertaken employing three-dimensional DCB models, and a number of statistical realizations based on variation of fracture energy were presented. In contrast to the results of two-dimensional analyses, simulations with 3D models demonstrated a lower load-bearing capacity for most of the random models as compared to the deterministic model with uniform material properties. The damaged area and the crack lengths in laminates were analyzed, and the results showed higher values of those parameters for random realizations compared to the uniform case for the same levels of applied displacement. The effect of material randomness on delamination in CFRP cross-ply laminates was also investigated. Initially, two-dimensional finite-element analyses were carried out to study the effect of microstructural randomness in a cross-ply laminate under bending with the direct introduction of matrix cracks with varying spacings and delamination zones. A considerable variation in the stiffness for cases with different crack spacings suggested that the assumption of averaged distributions of defects can lead to unreliable predictions of structural response. Three-dimensional uniform, deterministic cross-ply laminate models subjected to a tensile load were analyzed to study the delamination initiation and propagation from the tips of a pre-existing matrix crack. The material s stochasticity was then introduced, and a number of random statistical realizations were analyzed. It was observed that by neglecting the inherent material randomness of CFRP laminates, the initiation conditions for delamination as well as the character of its propagation cannot be properly detected and studied. For instance, the delamination crack length value for all the simulated random statistical realizations predicted its higher magnitudes compared to the uniform (deterministic) case for the same value of applied strain. Furthermore, the location of delamination initiation was shown to be different for different random statistical realizations. Another aspect, emphasizing the importance of microstructural randomness, was the scatter in the magnitudes of global strain at the instance of initiation and subsequent propagation of delamination. In summary, the material randomness in CFRPs can induce randomness in localised damage and it can affect the global properties of laminates and critical failure parameters. These effects can be investigated computationally through the use of stochastic cohesive-zone elements.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:519958
Date January 2010
CreatorsKhokhar, Zahid R.
PublisherLoughborough University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://dspace.lboro.ac.uk/2134/6125

Page generated in 0.002 seconds