Return to search

Accelerating Radiowave Propagation Simulations: A GPU-based Approach to Parabolic Equation Modeling / Accelererad simulering av utbredning av radiovågor: En GPU-baserad lösning av en parabolisk ekvation

This study explores the application of GPU-based algorithms in radiowave propagation modeling, specifically through the scope of solving parabolic wave equations. Radiowave propagation models are crucial in the field of wireless communications, where they help predict how radio waves travel through different environments, which is vital for planning and optimization. The research specifically examines the implementation of two numerical methods: the Split Step Method and the Finite Difference Method. Both methods are adapted to utilize the parallel processing capabilities of modern GPUs, harnessing a parallel computing framework known as CUDA to achieve considerable speed enhancements compared to traditional CPU-based methods.Our findings reveal that the Split Step method generally achieves higher speedup factors, especially in scenarios involving large system sizes and high-frequency simulations, making it particularly effective for expansive and complex models. In contrast, the Finite Difference Method shows more consistent speedup across various domain sizes and frequencies, suggesting its robustness across a diverse range of simulation conditions. Both methods maintained high accuracy levels, with differences in computed norms remaining low when comparing GPU implementations against their CPU counterparts.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-225820
Date January 2024
CreatorsNilsson, Andreas
PublisherUmeå universitet, Institutionen för fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds