A stable boundary treatment of the dynamic beam equation (DBE) with two different sets of boundary conditions has been conducted using the summation-by-parts-simultaneous-approximation-term (SBP-SAT) method. As the DBE involves a fourth derivative in space the numerical boundary treatment is highly non-trivial. Using SBP-SAT operators together with suitable time integration schemes the DBE has been simulated and a convergence study has been made. The results show that the SBP-SAT method produces a stable discretistation that is accurate enough to capture the dispersive nature of the dynamic beam equation. In additions simulations were made presenting the importance of a stable boundary treatment showing that the numerical solutions diverge when the boundaries were not handled correctly.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-227121 |
Date | January 2014 |
Creators | Stiernström, Vidar |
Publisher | Uppsala universitet, Institutionen för informationsteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TVE ; TVE 14 046 juni |
Page generated in 0.0015 seconds