Return to search

Interest-Rate Option Pricing Accounting For Jumps At Deterministic Times

The short rate is central in the context of interest-rate markets as well as broader finance. As such, accurate modelling of this rate is of particular importance in the pricing of interest-rate options, especially during times of high volatility where increased demand is seen for simpler and lower risk investments. Recent interest has moved away from models of a pure continuous nature towards models that can account for discontinuities in the short rate. These are more representative of real world movements where the short rate is seen to jump due to current and scheduled market information. This dissertation examines this phenomenon in the context of a Vasicek short rate model and accounts for random-sized jumps at deterministic times following ideas similar to those introduced by Kim and Wright (2014). Finite difference methods are used successfully to find PDE solutions via backwards diffusion of the option value equation to its initial state. This procedure is implemented computationally and compared to Monte Carlo benchmark methods in order to assess its accuracy. In both non-jump and jump settings the method constructed was able to accurately price the call option specified and proved to be a viable means for pricing interest-rate options when stochastically-sized discontinuities are present at known times between inception and expiry. Furthermore the method showed that the stochastic discontinues in the short rate most notably affect the option price in the region around and just out of the money.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/35629
Date31 January 2022
CreatorsAllman, Timothy
ContributorsBackwell, Alex
PublisherFaculty of Commerce, Department of Finance and Tax
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeMaster Thesis, Masters, MPhil
Formatapplication/pdf

Page generated in 0.0019 seconds