This project investigates the heat flow from the rock into ventilating airways by studying various parameters. Two approaches have been used: laboratory measurement of thermal properties to study their variation, and analytic and numerical models to study the effect of these variations on the heat flow. Access to a heat-flux system and special treatment of contact resistance has provided the opportunity to study thermal conductivity as a function of moisture contained in rock specimens. For porous sandstone, tuff, and concretes, thermal conductivity can double when the specimens are soaked; the functional dependence of conductivity on moisture for the first two cases is definitely non-linear. Five previous models for conductivity as a function of porosity are shown not to explain this new phenomenon. A preliminary finite element model is proposed which explains the key features. Other variations of conductivity with applied pressure, location, constituents, weathering or other damage, and anisotropy have been measured. In the second phase of the research, analytical and numerical methods have been employed to consider the effects of the variation in the thermal properties plus the use of insulation on the heat flow from the rock into the ventilated and cooled airways. Temperature measurements taken in drill holes at a local mine provide confirmation for some of the models. Results have been provided in a sensitivity analysis mode so that engineers working on other projects can see which parameters would require more detailed consideration. The thermal conductivity of the rock close to the airways is a key factor in affecting heat loads. Dewatering and the use of insulation, such as lightweight foamed shotcretes, are recommended.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/185768 |
Date | January 1992 |
Creators | Ashworth, Eileen. |
Contributors | McPherson, M.J., Harpalani, S., Kemeny, J.M., Neuman, S., Kulatilake, P.H.S.W. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0015 seconds