Return to search

THREE DIMENSIONAL FINITE ELEMENT MODELING OF PAVEMENT SUBSURFACE DRAINAGE SYSTEMS

Pavement subsurface drainage systems (PSDS) are designed to drain the entrapped water out of pavement. To investigate the effects of various factors on the performance of PSDS, three dimensional models were developed using the finite element method to simulate the unsaturated drainage process in pavement. The finite element models were calibrated using the field information on outflow, peak flow, layer saturations, and time to drain. Through a series of parametric analyses, the factors that significantly influence the performance of PSDS were screened out, and a set of recommendations were made to improve our current drainage practices.The effects of pavement geometry on drainage were studied in this research. The analysis results indicate that edgedrain system can significantly improve the drainage efficiency of a pavement. The drainage performance of a pavement is mainly affected by the geometric factors that related to the edgedrain itself and the geometric factors related to the driving lanes have very limited effects.To investigate the influences of the properties of various pavement materials, some physical-empirical equations were developed in this research. These equations were used to predict the material hydraulic properties from their grain-size distributions and aggregate/asphalt contents. The analysis results of the models with various material properties indicate that the use of permeable base is effective in improving the drainage ability of a pavement. The performance of PSDS is not only affected by material permeability but also by their waterretention ability. The pavement works as an integrated hydraulic system and the hydraulic compatibility of materials must be considered in the PSDS design.The effects of climatic factors on pavement drainage were also studied in this research. A method was developed in this research to numerically describe the rainfall events. The analysis results of the models under various rainfall events indicate that rainfall duration is a more important parameter than the rainfall quantity in influencing the pavement drainage. Based on the analysis results, regression equations were developed for the estimation of pavement drainage. Finally, for design application purpose, a series of tables were included in this report to help with proper selected of pavement drainage options.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1314
Date01 January 2005
CreatorsLiu, Yinhui
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Doctoral Dissertations

Page generated in 0.0016 seconds