A finite cover C of a group G is a finite collection of proper subgroups of G such that G is equal to the union of all of the members of C. Such a cover is called minimal if it has the smallest cardinality among all finite covers of G. The covering number of G, denoted by σ(G), is the number of subgroups in a minimal cover of G. Here we determine the covering numbers of the projective special unitary groups U3(q) for q ≤ 5, and give upper and lower bounds for the covering number of U3(q) when q > 5. We also determine the covering number of the McLaughlin sporadic simple group, and verify previously known results on the covering numbers of the Higman-Sims and Held groups. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_41342 |
Contributors | Epstein, Michael (author), Magliveras, Spyros S. (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Mathematical Sciences |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 104 p., application/pdf |
Rights | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds