Return to search

Application of the FDTD Method with the Scattering Matrix in Microwave Circuit Simulation

The finite-Difference Time Domain method (FDTD) is to derive the discrete form of the Maxwell¡¦s equations by second-order central difference with the electromagnetic distribution of the Yee space lattice, and computes the value of the electric field and magnetic field in the simulation space by using leapfrog for time derivatives. This method is also different with the frequency domain method which needs to analyze its value individually (ex. Finite Element method). The frequency domain method needs to take a long time for analyzing the response on each spectrum point when the bandwidth is very wide. The advantage of time domain analysis is to obtain the complete frequency response from the simulation value through Fourier Transform method.
It¡¦s impossible to combine the electromagnetic analysis with the lumped circuit simulation in current simulation CAD. Thereby the performance of the simulation result and the practical implementation always occurs error because of the lake of the consideration. The FDTD method is the full-wave algorithm which can also simulate the lump element, nonlinear element or active element in simulation space by linking to SPICE or S-parameter. The purpose of this thesis is to develop the method for simulating microwave circuit, and to verify the credibility between the equivalent source method and the S-parameter method in FDTD by the simulation of active antenna and low-noise amplifier.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0715103-102834
Date15 July 2003
CreatorsHuang, Jun-Xian
ContributorsKen-Huang Lin, Tzong-Lin Wu, Chih-Wen Kuo
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0715103-102834
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0019 seconds