Return to search

Piezoelectric Energy Harvesting For Munitions Applications

In recent years, vibration-based energy harvesting technologies have gained great importance because of reduced power requirement of small electronic components. External power source and maintenance requirement can be minimized by employment of mechanical vibration energy harvesters. Power sources that harvest energy from the environment have the main advantages of high safety, long shell life and low cost compared to chemical batteries. Electromagnetic, electrostatic and piezoelectric transduction mechanisms are the three main energy harvesting methods.
In this thesis, it is aimed to apply the piezoelectric elements technology to develop means for energy storage in munitions launch. The practical problems encountered in the design of piezoelectric energy harvesters are investigated. The applicability of energy harvesting to high power needs are studied. The experience compiled in the study is to be exploited in designing piezoelectric energy harvesters for munitions applications.
Piezoelectric energy harvesters for harmonic and mechanical shock loading conditions with different types of piezoelectric materials are designed and tested. The test results are compared with both responses from analytical models generated in MATLAB&reg / and ORCAD PSPICE&reg / , and finite element method models generated in ATILA&reg / . Optimum energy storage methods are considered.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613589/index.pdf
Date01 September 2011
CreatorsErsoy, Kurtulus
ContributorsCaliskan, Mehmet
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0018 seconds