The current Swedish building code (Boverkets Byggregler, BBR) is very strict regarding fire-safety in high-rise timber structures because of the heightened risk of fast flame spread or structural failure in case of fire. Fire safety solutions, that are used in timber structures must therefore be optimal to contain flames from spreading in the event of fire. The current building code requires that load-bearing elements must withhold their load-bearing capacity for 60 minutes under fire. The purpose of this study was to research the effect that different fire-retardant surface treatments, have on fire protection of a load bearing, laminated timber element. Thereafter, a short analysis was made on the environmental impact of the fire-retardant surface-treatments in question and finally, a cost analysis and comparison were conducted with regard to different fire-safety solutions such as fire-resistant gypsum board and a combination of fire-resistant gypsum board and stone-wool. The methods used in this study are a combination of theoretical reviews and theoretical calculations. A theoretical review was conducted in order to collect the information needed to understand the behavior of timber under fire, the impact of fire-resistant surface treatments on fire protection, and the environmental impact of the actual surface treatments. Therefore, a series of theoretical calculations were made in accordance with European standards (Eurocodes) in order to present the impact in numbers. The calculations made were concerning a laminated timber beam with the dimensions of 145 x 450 x 6000 [mm] and took into account the remaining cross-section of the timber element under various timestamps during fire with regard to fire-stage, charring-rate, and fire coating. The results of this study indicate that the moment-capacity and shear-capacity of an untreated beam decrease constantly under fire and does not fulfill the requirements of the Swedish building code. Thereafter, in case that the same timber beam is fire-treated with a fire-retardant surface treatment. The moment-capacity is observed to increase in the first stage of fire, were the fire-protection of the surface-retardant treatment is still in action. Therefore, after fire-protection ceases, the moment-capacity of the timber beam is calculated to decrease in different rates with regard to fire-stage. The shear capacity of the treated beam is calculated to decrease under fire with a time-displacement of 30 & 60 minutes in comparison to the untreated element. The conclusions are that the studied surface treated timber beam and the actual fire treatments fulfill the requirements of the Swedish building code. Have insignificant environmental impact and are in comparison to other solutions cheaper.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-55197 |
Date | January 2021 |
Creators | Issa, Angelo, Machhadi, Maher, Barbu, Mircea |
Publisher | Mälardalens högskola, Akademin för ekonomi, samhälle och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0157 seconds